Gate-controlled valley transport and Goos–Hänchen effect in monolayer WS2

Based on a Dirac-like Hamiltonian and coherent scattering formalism, we study the spin-valley transport and Goos-Hänchen-like (GHL) effect of transmitted and reflected electrons in a gated monolayer WS2. Our results show that the lateral shift of spin-polarized electrons is strongly dependent on the width of the gated region and can be positive or negative in both Klein tunneling and classical motion regimes. The absolute values of the lateral displacements at resonance positions can be considerably enhanced when the incident angle of electrons is close to the critical angle. In contrast to the time reversal symmetry for the transmitted electrons, the GHL shift of the reflected beams is not invariant under simultaneous interchange of spins and valleys, indicating the lack of spin-valley symmetry induced by the tunable potential barrier on the WS2 monolayer. Our findings provide evidence for electrical control of valley filtering and valley beam splitting by tuning the incident angle of electrons in nanoelectronic devices based on monolayer transition metal dichalcogenides.

[1]  Sankalpa Ghosh,et al.  Electron optics with magnetic vector potential barriers in graphene , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  Xi Chen,et al.  Goos-Hänchen-like shifts for Dirac fermions in monolayer graphene barrier , 2010, 1004.0350.

[3]  Jing Kong,et al.  Valley-selective optical Stark effect in monolayer WS2. , 2014, Nature materials.

[4]  M. I. Katsnelson,et al.  Chiral tunnelling and the Klein paradox in graphene , 2006 .

[5]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[6]  A. Saffarzadeh,et al.  Atomic defect states in monolayers of MoS2 and WS2 , 2016, 1605.08756.

[7]  O. Klein,et al.  Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac , 1929 .

[8]  G. Kirczenow,et al.  Voltage-controlled spin injection with an endohedral fullerene Co@C60 dimer , 2013, 1304.7901.

[9]  F. Cheng,et al.  Spin and valley transport in monolayers of MoS2 , 2014 .

[10]  Xi Chen,et al.  Giant negative and positive lateral shifts in graphene superlattices , 2013 .

[11]  Cheol-Hwan Park,et al.  Electron beam supercollimation in graphene superlattices. , 2008, Nano letters.

[12]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[13]  Xi Chen,et al.  Design of electron wave filters in monolayer graphene by tunable transmission gap , 2009, 0907.0331.

[14]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[15]  F. Zhai,et al.  Valley beam splitter based on strained graphene , 2011 .

[16]  W. Marsden I and J , 2012 .

[17]  Benjamin Moallic,et al.  Sur , 2019, Persephone in Buenos Aires.

[18]  Xiangshan Chen,et al.  Novel displacement in transmission through a two-dimensional semiconductor barrier , 2006 .

[19]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[20]  Vladimir Fal'ko,et al.  The Focusing of Electron Flow and a Veselago Lens in Graphene p-n Junctions , 2007, Science.

[21]  F. Goos,et al.  Ein neuer und fundamentaler Versuch zur Totalreflexion , 1947 .

[22]  Zhenhua Wu,et al.  Valley-dependent Brewster angles and Goos-Hänchen effect in strained graphene. , 2010, Physical review letters.

[23]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[24]  Xiang Zhang,et al.  Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. , 2016, Nature nanotechnology.

[25]  Ali G. Moghaddam,et al.  Graphene-based electronic spin lenses. , 2010, Physical review letters.

[26]  C. Beenakker,et al.  Quantum Goos-Hänchen effect in graphene. , 2008, Physical review letters.

[27]  G. Maksimova,et al.  Spin- and valley-dependent Goos–Hänchen effect in silicene and gapped graphene structures , 2016, 1610.05491.

[28]  Andrew G. Glen,et al.  APPL , 2001 .

[29]  Qingtian Zhang,et al.  A spin beam splitter in graphene through the Goos–Hänchen shift , 2014 .

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  Helmuth Berger,et al.  Mono- and bilayer WS2 light-emitting transistors. , 2014, Nano letters.

[32]  Xiaodong Cui,et al.  Exciton Binding Energy of Monolayer WS2 , 2014, Scientific Reports.

[33]  Yu Song,et al.  Giant Goos-Hänchen shift in graphene double-barrier structures , 2012, 1208.2395.

[34]  Sankalpa Ghosh,et al.  Electron optics with dirac fermions: electron transport in monolayer and bilayer graphene through magnetic barrier and their superlattices , 2013, 1301.7707.

[35]  Wang Yao,et al.  Valley-dependent optoelectronics from inversion symmetry breaking , 2007, 0705.4683.

[36]  C. Beenakker Andreev reflection and Klein tunneling in graphene , 2007, 0710.3848.

[37]  Steven G. Louie,et al.  Probing excitonic dark states in single-layer tungsten disulphide , 2014, Nature.

[38]  Ji Feng,et al.  Coupling the valley degree of freedom to antiferromagnetic order , 2012, Proceedings of the National Academy of Sciences.