The stochastic goodwill problem

Stochastic control problems related to optimal advertising under uncertainty are considered. In particular, we determine the optimal strategies for the problem of maximizing the utility of goodwill at launch time and minimizing the disutility of a stream of advertising costs that extends until the launch time for some classes of stochastic perturbations of the classical Nerlove-Arrow dynamics. We also consider some generalizations such as problems with constrained budget and with discretionary launching.

[1]  Eitan Muller,et al.  Trial/awareness advertising decisions: A control problem with phase diagrams with non-stationary boundaries , 1983 .

[2]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  G. Thompson,et al.  Optimal Control Theory: Applications to Management Science and Economics , 2000 .

[4]  Charles S. Tapiero Applied stochastic models and control in management , 1988 .

[5]  Puneet Manchanda,et al.  Differences in Dynamic Brand Competition Across Markets: An Empirical Analysis , 2005 .

[6]  Maria G. Reznikoff,et al.  A Two – Scale Proof of a Logarithmic Sobolev Inequality , 2022 .

[7]  E. D. Santis,et al.  Stochastic games with infinitely many interacting agents , 2005 .

[8]  D. Roose,et al.  Computation of Permeability of Textile Reinforcements , 2005 .

[9]  N. V. Krylov Stochastic Linear Controlled Systems with Quadratic Cost Revisited , 2001 .

[10]  David Yao,et al.  Solvability of a stochastic linear quadratic optimal control problem , 2002 .

[11]  Felix Otto,et al.  Coarsening Rates for a Droplet Model: Rigorous Upper Bounds , 2006, SIAM J. Math. Anal..

[12]  Carlo Marinelli,et al.  Stochastic optimal control of delay equations arising in advertising models , 2004, math/0412403.

[13]  J. Dieudonne Foundations of Modern Analysis , 1969 .

[14]  Panayot S. Vassilevski,et al.  Space-Time Approximation with Sparse Grids , 2006, SIAM J. Sci. Comput..

[15]  A. Bensoussan Stochastic Control of Partially Observable Systems , 1992 .

[16]  M. Zervos,et al.  An investment model with entry and exit decisions , 2000 .

[17]  I. Karatzas,et al.  Finite-Fuel Singular Control With Discretionary Stopping , 2000 .

[18]  W. T. Tucker Linear Estimation and Stochastic Control , 1984 .

[19]  V. Borkar Controlled diffusion processes , 2005, math/0511077.

[20]  A. Bensoussan,et al.  Contrôle impulsionnel et inéquations quasi variationnelles , 1982 .

[21]  Frank M. Bass,et al.  A New Product Growth for Model Consumer Durables , 2004, Manag. Sci..

[22]  R. Hartl,et al.  Dynamic Optimal Control Models in Advertising: Recent Developments , 1994 .

[23]  Ram C. Rao,et al.  Estimating Continuous Time Advertising-Sales Models , 1986 .

[24]  Mihail Zervos,et al.  A Problem of Sequential Entry and Exit Decisions Combined with Discretionary Stopping , 2003, SIAM J. Control. Optim..

[25]  S. Hildebrandt,et al.  Conformal representation of surfaces, and Plateau's problem for Cartan functionals , 2005 .

[26]  Hui Wang,et al.  Utility Maximization with Discretionary Stopping , 2000, SIAM J. Control. Optim..

[27]  A. Shiryayev,et al.  Statistics of Random Processes I: General Theory , 1984 .

[28]  Iosif Ilitch Gikhman,et al.  Introduction to the theory of random processes , 1969 .

[29]  Bruno Viscolani,et al.  New product introduction: goodwill, time and advertising cost , 2002, Math. Methods Oper. Res..

[30]  J. Urbas,et al.  NONLINEAR ELLIPTIC AND PARABOLIC EQUATIONS OF THE SECOND ORDER , 1989 .

[31]  Pradeep K. Chintagunta,et al.  Investigating Dynamic Multifirm Market Interactions in Price and Advertising , 1999 .

[32]  M. Zervos,et al.  A model for investment decisions with switching costs , 2001 .

[33]  B. Øksendal,et al.  Applied Stochastic Control of Jump Diffusions , 2004, Universitext.

[34]  Michael Griebel,et al.  Coarse grid classification: a parallel coarsening scheme for algebraic multigrid methods , 2006, Numer. Linear Algebra Appl..

[35]  Robert Philipowski Interacting diffusions approximating the porous medium equation and propagation of chaos , 2007 .

[36]  Singular Probability Distributions and Fractal Properties of Sets of Real Numbers Defined by the Asymptotic Frequencies of Their s-Adic Digits , 2005 .

[37]  K. Arrow,et al.  OPTIMAL ADVERTISING POLICY UNDER DYNAMIC CONDITIONS , 1962 .

[38]  Carlo Marinelli The Stochastic Goodwill Problem , 2003 .

[39]  Marc Roubens,et al.  Multiple criteria decision making , 1994 .

[40]  AN ANALYTIC APPROACH TO TURAEV'S SHADOW INVARIANT , 2005, math-ph/0507040.

[41]  J. Bismut Linear Quadratic Optimal Stochastic Control with Random Coefficients , 1976 .

[42]  M. Griebel,et al.  Semi-supervised learning with sparse grids , 2005, ICML 2005.

[43]  N. Krylov,et al.  Introduction to the Theory of Random Processes , 2002 .

[44]  K. Raman,et al.  Stochastically optimal advertising policies under dynamic conditions: the ratio rule , 1990 .

[45]  Bruno Viscolani,et al.  Advertising for a new product introduction: A stochastic approach , 2004 .

[46]  X. Zhou,et al.  Stochastic Controls: Hamiltonian Systems and HJB Equations , 1999 .

[47]  Hiroaki Morimoto Variational Inequalities for Combined Control and Stopping , 2003, SIAM J. Control. Optim..

[48]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[49]  John B. Moore,et al.  Indefinite Stochastic Linear Quadratic Control and Generalized Differential Riccati Equation , 2002, SIAM J. Control. Optim..