Fusion pore in exocytosis: More than an exit gate? A β-cell perspective.

[1]  E. Prenner,et al.  Applications of Brewster angle microscopy from biological materials to biological systems. , 2017, Biochimica et biophysica acta. Biomembranes.

[2]  R. Jahn,et al.  Membrane tension increases fusion efficiency of model membranes in the presence of SNAREs , 2017, Scientific Reports.

[3]  L. Groop,et al.  Glucose-Induced Changes in Gene Expression in Human Pancreatic Islets: Causes or Consequences of Chronic Hyperglycemia , 2017, Diabetes.

[4]  P. Berggren,et al.  SNAP-25b-deficiency increases insulin secretion and changes spatiotemporal profile of Ca2+oscillations in β cell networks , 2017, Scientific Reports.

[5]  Martin Kahms,et al.  The Presynaptic v-ATPase Reversibly Disassembles and Thereby Modulates Exocytosis but Is Not Part of the Fusion Machinery. , 2017, Cell reports.

[6]  W. Baumeister,et al.  Morphologies of synaptic protein membrane fusion interfaces , 2017, Proceedings of the National Academy of Sciences.

[7]  G. Mithieux,et al.  Gut-Brain Glucose Signaling in Energy Homeostasis. , 2017, Cell metabolism.

[8]  D. Perrais,et al.  A Central Small Amino Acid in the VAMP2 Transmembrane Domain Regulates the Fusion Pore in Exocytosis , 2017, Scientific Reports.

[9]  Till Bärnighausen,et al.  The global economic burden of diabetes in adults aged 20-79 years: a cost-of-illness study. , 2017, The lancet. Diabetes & endocrinology.

[10]  P. MacDonald,et al.  Kv2.1 Clustering Contributes to Insulin Exocytosis and Rescues Human β-Cell Dysfunction , 2017, Diabetes.

[11]  Yingke Xu,et al.  Excess cholesterol inhibits glucose‐stimulated fusion pore dynamics in insulin exocytosis , 2017, Journal of cellular and molecular medicine.

[12]  J. Rizo,et al.  Heterodimerization of Munc13 C2A domain with RIM regulates synaptic vesicle docking and priming , 2017, Nature Communications.

[13]  A. Sherman,et al.  Ca2+ channel clustering with insulin-containing granules is disturbed in type 2 diabetes , 2017, The Journal of clinical investigation.

[14]  K. Lidke,et al.  Cellular and molecular mechanism for secretory autophagy , 2017, Autophagy.

[15]  S. Mayor,et al.  The mystery of membrane organization: composition, regulation and roles of lipid rafts , 2017, Nature Reviews Molecular Cell Biology.

[16]  B. O’Shaughnessy,et al.  Dilation of fusion pores by crowding of SNARE proteins , 2017, eLife.

[17]  P. MacDonald,et al.  SUMOylation and calcium control syntaxin-1A and secretagogin sequestration by tomosyn to regulate insulin exocytosis in human ß cells , 2017, Scientific Reports.

[18]  Y. Shin,et al.  Hemifusion in Synaptic Vesicle Cycle , 2017, Front. Mol. Neurosci..

[19]  M. Jackson,et al.  Fusion pores and their control of neurotransmitter and hormone release , 2017, The Journal of general physiology.

[20]  P. MacDonald,et al.  Toward Connecting Metabolism to the Exocytotic Site. , 2017, Trends in cell biology.

[21]  T. Salditt,et al.  X-ray structural investigations of fusion intermediates: Lipid model systems and beyond. , 2016, Seminars in cell & developmental biology.

[22]  M. G. Pedersen,et al.  Statistical Frailty Modeling for Quantitative Analysis of Exocytotic Events Recorded by Live Cell Imaging: Rapid Release of Insulin-Containing Granules Is Impaired in Human Diabetic β-cells , 2016, PloS one.

[23]  F. Ashcroft,et al.  Hyperglycaemia induces metabolic dysfunction and glycogen accumulation in pancreatic β-cells , 2016, Nature Communications.

[24]  R. Jahn,et al.  SNARE-mediated membrane fusion trajectories derived from force-clamp experiments , 2016, Proceedings of the National Academy of Sciences.

[25]  Tao Xu,et al.  HID-1 is required for homotypic fusion of immature secretory granules during maturation , 2016, eLife.

[26]  Lisa J. Mellander,et al.  Cholesterol Alters the Dynamics of Release in Protein Independent Cell Models for Exocytosis , 2016, Scientific Reports.

[27]  W. Hong,et al.  Molecular regulation of insulin granule biogenesis and exocytosis. , 2016, The Biochemical journal.

[28]  D. Banfield,et al.  Multiple ER–Golgi SNARE transmembrane domains are dispensable for trafficking but required for SNARE recycling , 2016, Molecular biology of the cell.

[29]  L. Tamm,et al.  The role of cholesterol in membrane fusion. , 2016, Chemistry and physics of lipids.

[30]  O. Shupliakov,et al.  Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane , 2016, Nature Communications.

[31]  Zeno Lavagnino,et al.  Snapshot Hyperspectral Light-Sheet Imaging of Signal Transduction in Live Pancreatic Islets. , 2016, Biophysical journal.

[32]  Stephen C. J. Parker,et al.  The genetic architecture of type 2 diabetes , 2016, Nature.

[33]  C. Janetopoulos,et al.  Recent advances in imaging subcellular processes , 2016, F1000Research.

[34]  M. Lindau,et al.  v-SNARE transmembrane domains function as catalysts for vesicle fusion , 2016, eLife.

[35]  B. Kachar,et al.  Hemi-fused structure mediates and controls fusion and fission in live cells , 2016, Nature.

[36]  S. Barg,et al.  How Kiss-and-Run Can Make Us Sick: SOX4 Puts a Break on the Pore , 2016, Diabetes.

[37]  E. Karatekin,et al.  Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains , 2016, Scientific Reports.

[38]  R. Böckmann,et al.  Exploring the Formation and the Structure of Synaptobrevin Oligomers in a Model Membrane. , 2016, Biophysical journal.

[39]  T. Liang,et al.  Synaptotagmin-7 Functions to Replenish Insulin Granules for Exocytosis in Human Islet β-Cells , 2016, Diabetes.

[40]  L. Movileanu,et al.  Yeast V-ATPase Proteolipid Ring Acts as a Large-conductance Transmembrane Protein Pore , 2016, Scientific Reports.

[41]  Cong Ma,et al.  Synaptotagmin-1 C2B domain interacts simultaneously with SNAREs and membranes to promote membrane fusion , 2016, eLife.

[42]  D. Baddeley,et al.  Cholesterol Increases the Openness of SNARE-Mediated Flickering Fusion Pores. , 2016, Biophysical journal.

[43]  A. Egner,et al.  Dominant negative SNARE peptides stabilize the fusion pore in a narrow, release-unproductive state , 2016, Cellular and Molecular Life Sciences.

[44]  R. Cox,et al.  Increased Expression of the Diabetes Gene SOX4 Reduces Insulin Secretion by Impaired Fusion Pore Expansion , 2016, Diabetes.

[45]  T. Liang,et al.  Syntaxin-3 Binds and Regulates Both R- and L-Type Calcium Channels in Insulin-Secreting INS-1 832/13 Cells , 2016, PloS one.

[46]  B. Hausott,et al.  Membrane turnover and receptor trafficking in regenerating axons , 2016, The European journal of neuroscience.

[47]  Christian Rosenmund,et al.  Should I stop or should I go? The role of complexin in neurotransmitter release , 2016, Nature Reviews Neuroscience.

[48]  M. Lindau,et al.  The mystery of the fusion pore , 2016, Nature Structural &Molecular Biology.

[49]  Huan Bao,et al.  Exocytotic fusion pores are composed of both lipids and proteins , 2015, Nature Structural &Molecular Biology.

[50]  Brian N. Kim,et al.  A Coarse Grained Model for a Lipid Membrane with Physiological Composition and Leaflet Asymmetry , 2015, PloS one.

[51]  M. Jackson,et al.  Lipid-anchored Synaptobrevin Provides Little or No Support for Exocytosis or Liposome Fusion* , 2015, The Journal of Biological Chemistry.

[52]  Kyle J. Gaulton,et al.  Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors , 2015, PLoS genetics.

[53]  H. Chakraborty,et al.  Phosphatidylserine-Dependent Catalysis of Stalk and Pore Formation by Synaptobrevin JMR-TMD Peptide. , 2015, Biophysical journal.

[54]  L. Philipson,et al.  Dynamin 2 regulates biphasic insulin secretion and plasma glucose homeostasis. , 2015, The Journal of clinical investigation.

[55]  Sho Yagishita,et al.  Two-photon fluorescence lifetime imaging of primed SNARE complexes in presynaptic terminals and β cells , 2015, Nature Communications.

[56]  P. Neufer,et al.  Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells. , 2015, The Journal of clinical investigation.

[57]  Michael Stangl,et al.  Functional competition within a membrane: Lipid recognition vs. transmembrane helix oligomerization. , 2015, Biochimica et biophysica acta.

[58]  W. Bement,et al.  Cell healing: Calcium, repair and regeneration. , 2015, Seminars in cell & developmental biology.

[59]  R. Böckmann,et al.  Synaptobrevin Transmembrane Domain Dimerization Studied by Multiscale Molecular Dynamics Simulations. , 2015, Biophysical journal.

[60]  Wei Guo,et al.  The Exocyst at a Glance , 2015, Journal of Cell Science.

[61]  M. Kozlov,et al.  Membrane tension and membrane fusion. , 2015, Current opinion in structural biology.

[62]  Y. Kalaidzidis,et al.  A Spatial Model of Insulin‐Granule Dynamics in Pancreatic β‐Cells , 2015, Traffic.

[63]  T. Südhof,et al.  Synaptotagmin-7 phosphorylation mediates GLP-1–dependent potentiation of insulin secretion from β-cells , 2015, Proceedings of the National Academy of Sciences.

[64]  Robert R. Henry,et al.  Type 2 diabetes mellitus , 2015, Nature Reviews Disease Primers.

[65]  L. Tamm,et al.  High cholesterol obviates a prolonged hemifusion intermediate in fast SNARE-mediated membrane fusion. , 2015, Biophysical journal.

[66]  W. Hong,et al.  VAMP8-dependent fusion of recycling endosomes with the plasma membrane facilitates T lymphocyte cytotoxicity , 2015, The Journal of cell biology.

[67]  M. Aronova,et al.  Combining quantitative 2D and 3D image analysis in the serial block face SEM: application to secretory organelles of pancreatic islet cells , 2015, Journal of microscopy.

[68]  J. Rizo,et al.  The Synaptic Vesicle Release Machinery. , 2015, Annual review of biophysics.

[69]  P. MacDonald,et al.  Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion. , 2015, Molecular endocrinology.

[70]  E. Neher,et al.  Complexin Stabilizes Newly Primed Synaptic Vesicles and Prevents Their Premature Fusion at the Mouse Calyx of Held Synapse , 2015, The Journal of Neuroscience.

[71]  S. Seino,et al.  β Cell Dysfunction Versus Insulin Resistance in the Pathogenesis of Type 2 Diabetes in East Asians , 2015, Current Diabetes Reports.

[72]  Xiaosong Ma,et al.  Glucotoxicity inhibits cAMP–protein kinase A‐potentiated glucose‐stimulated insulin secretion in pancreatic β‐cells葡萄糖毒性抑制cAMP‐PKA通路促进的胰岛β细胞中血糖刺激的胰岛素分泌 , 2015, Journal of diabetes.

[73]  Dale L. Greiner,et al.  Novel Observations From Next-Generation RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets , 2015, Diabetes.

[74]  Hongyuan Yang,et al.  Cholesterol Transport through Lysosome-Peroxisome Membrane Contacts , 2015, Cell.

[75]  M. Jackson,et al.  A Structural Role for the Synaptobrevin 2 Transmembrane Domain in Dense-Core Vesicle Fusion Pores , 2015, The Journal of Neuroscience.

[76]  F. Alsaraj Pathogenesis of Type 2 Diabetes Mellitus , 2015 .

[77]  Yen-Lin Chen,et al.  Associations between genetic variants and the severity of metabolic syndrome in subjects with type 2 diabetes. , 2015, Genetics and molecular research : GMR.

[78]  A. Mayer,et al.  Vacuolar SNARE Protein Transmembrane Domains Serve as Nonspecific Membrane Anchors with Unequal Roles in Lipid Mixing* , 2015, The Journal of Biological Chemistry.

[79]  C. Rentero,et al.  Role of cholesterol in SNARE-mediated trafficking on intracellular membranes , 2015, Journal of Cell Science.

[80]  T. Liang,et al.  Syntaxin-4 mediates exocytosis of pre-docked and newcomer insulin granules underlying biphasic glucose-stimulated insulin secretion in human pancreatic beta cells , 2015, Diabetologia.

[81]  J. Flanagan,et al.  Examination of Sec22 Homodimer Formation and Role in SNARE-dependent Membrane Fusion* , 2015, The Journal of Biological Chemistry.

[82]  P. Froguel,et al.  Rare and common genetic events in type 2 diabetes: what should biologists know? , 2015, Cell metabolism.

[83]  T. Liang,et al.  Munc18c mediates exocytosis of pre-docked and newcomer insulin granules underlying biphasic glucose stimulated insulin secretion in human pancreatic beta-cells , 2015, Molecular metabolism.

[84]  Jeffrey J. Gray,et al.  Computational modeling of membrane proteins , 2015, Proteins.

[85]  P. Rorsman,et al.  RFX6 regulates insulin secretion by modulating Ca2+ homeostasis in human β cells. , 2014, Cell reports.

[86]  T. Südhof The molecular machinery of neurotransmitter release (Nobel lecture). , 2014, Angewandte Chemie.

[87]  J. Rothman The principle of membrane fusion in the cell (Nobel lecture). , 2014, Angewandte Chemie.

[88]  Andrew E. Blanchard,et al.  A highly tilted membrane configuration for the prefusion state of synaptobrevin. , 2014, Biophysical journal.

[89]  P. Gestraud,et al.  Cdc42 controls the dilation of the exocytotic fusion pore by regulating membrane tension , 2014, Molecular biology of the cell.

[90]  L. Groop,et al.  Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism , 2014, Proceedings of the National Academy of Sciences.

[91]  R. Jahn,et al.  Variable cooperativity in SNARE-mediated membrane fusion , 2014, Proceedings of the National Academy of Sciences.

[92]  A. Gloyn,et al.  The pancreatic β cell: recent insights from human genetics , 2014, Trends in Endocrinology & Metabolism.

[93]  H. Gaisano Here come the newcomer granules, better late than never , 2014, Trends in Endocrinology & Metabolism.

[94]  H. Grubmüller,et al.  Expansion of the fusion stalk and its implication for biological membrane fusion , 2014, Proceedings of the National Academy of Sciences.

[95]  Inês Barroso,et al.  Impact of Type 2 Diabetes Susceptibility Variants on Quantitative Glycemic Traits Reveals Mechanistic Heterogeneity , 2014, Diabetes.

[96]  Y. Shin,et al.  Multiple conformations of a single SNAREpin between two nanodisc membranes reveal diverse pre-fusion states. , 2014, The Biochemical journal.

[97]  S. Kahn,et al.  Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future , 2014, The Lancet.

[98]  U. Boggi,et al.  Are we overestimating the loss of beta cells in type 2 diabetes? , 2014, Diabetologia.

[99]  S. Kazarian,et al.  Recent applications of ATR FTIR spectroscopy and imaging to proteins. , 2013, Biochimica et biophysica acta.

[100]  Tim Werner,et al.  Kink Characterization and Modeling in Transmembrane Protein Structures , 2013, J. Chem. Inf. Model..

[101]  T. Südhof,et al.  Lipid-Anchored SNAREs Lacking Transmembrane Regions Fully Support Membrane Fusion during Neurotransmitter Release , 2013, Neuron.

[102]  Y. Shai ATR-FTIR studies in pore forming and membrane induced fusion peptides. , 2013, Biochimica et biophysica acta.

[103]  W. Almers,et al.  Rapid structural change in synaptosomal-associated protein 25 (SNAP25) precedes the fusion of single vesicles with the plasma membrane in live chromaffin cells , 2013, Proceedings of the National Academy of Sciences.

[104]  M. Prentki,et al.  Metabolic signaling in fuel-induced insulin secretion. , 2013, Cell metabolism.

[105]  R. Zorec,et al.  Fusion Pores, SNAREs, and Exocytosis , 2013, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[106]  Jacques Fantini,et al.  How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains , 2013, Front. Physiol..

[107]  Patrik Rorsman,et al.  Regulation of insulin secretion in human pancreatic islets. , 2013, Annual review of physiology.

[108]  B. Cravatt,et al.  Proteome-wide Mapping of Cholesterol-Interacting Proteins in Mammalian Cells , 2013, Nature Methods.

[109]  Alba Diz-Muñoz,et al.  Use the force: membrane tension as an organizer of cell shape and motility. , 2013, Trends in cell biology.

[110]  N. Mizushima,et al.  The Hairpin-type Tail-Anchored SNARE Syntaxin 17 Targets to Autophagosomes for Fusion with Endosomes/Lysosomes , 2012, Cell.

[111]  M. Bugliani,et al.  Ultrastructural morphometric analysis of insulin secretory granules in human type 2 diabetes , 2012, Acta Diabetologica.

[112]  C. Ladenvall,et al.  Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes , 2012, Molecular and Cellular Endocrinology.

[113]  Bruno Antonny,et al.  Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. , 2012, Developmental cell.

[114]  Yingke Xu,et al.  Cholesterol Accumulation Increases Insulin Granule Size and Impairs Membrane Trafficking , 2012, Traffic.

[115]  A. Tengholm Cyclic AMP dynamics in the pancreatic β-cell , 2012, Upsala journal of medical sciences.

[116]  R. Jahn,et al.  Molecular machines governing exocytosis of synaptic vesicles , 2012, Nature.

[117]  M. Woo,et al.  Dual role of VAMP8 in regulating insulin exocytosis and islet β cell growth. , 2012, Cell metabolism.

[118]  M. Lindau High resolution electrophysiological techniques for the study of calcium-activated exocytosis. , 2012, Biochimica et biophysica acta.

[119]  M. McCarthy,et al.  Reduced Insulin Exocytosis in Human Pancreatic β-Cells With Gene Variants Linked to Type 2 Diabetes , 2012, Diabetes.

[120]  M. Verhage,et al.  Munc18-1 Regulates First-phase Insulin Release by Promoting Granule Docking to Multiple Syntaxin Isoforms* , 2012, The Journal of Biological Chemistry.

[121]  S. Grinstein,et al.  Phosphatidylserine dynamics in cellular membranes , 2012, Molecular biology of the cell.

[122]  T. Salditt,et al.  Energetics of stalk intermediates in membrane fusion are controlled by lipid composition , 2012, Proceedings of the National Academy of Sciences.

[123]  T. Salditt,et al.  Acyl-chain correlation in membrane fusion intermediates: x-ray diffraction from the rhombohedral lipid phase. , 2012, Biophysical journal.

[124]  D. Koh,et al.  Paracrine Interactions Within Islets of Langerhans , 2012, Journal of Molecular Neuroscience.

[125]  Helmut Grubmüller,et al.  How SNARE molecules mediate membrane fusion: recent insights from molecular simulations. , 2012, Current opinion in structural biology.

[126]  F. W. Tse,et al.  Influence of Cholesterol on Cellular Signaling and Fusion Pore Kinetics , 2012, Journal of Molecular Neuroscience.

[127]  F. Ashcroft,et al.  Diabetes Mellitus and the β Cell: The Last Ten Years , 2012, Cell.

[128]  Frédéric Pincet,et al.  SNARE Proteins: One to Fuse and Three to Keep the Nascent Fusion Pore Open , 2012, Science.

[129]  A. Müller,et al.  Novel standards in the measurement of rat insulin granules combining electron microscopy, high-content image analysis and in silico modelling , 2012, Diabetologia.

[130]  P. Visscher,et al.  Five years of GWAS discovery. , 2012, American journal of human genetics.

[131]  Sune M. Christensen,et al.  Intermembrane docking reactions are regulated by membrane curvature. , 2011, Biophysical journal.

[132]  L. Philipson,et al.  Coupling of metabolic, second messenger pathways and insulin granule dynamics in pancreatic beta-cells: a computational analysis. , 2011, Progress in biophysics and molecular biology.

[133]  J. Zimmerberg,et al.  Lipid polymorphisms and membrane shape. , 2011, Cold Spring Harbor perspectives in biology.

[134]  W. Wickner,et al.  A lipid-anchored SNARE supports membrane fusion , 2011, Proceedings of the National Academy of Sciences.

[135]  James D. Johnson,et al.  Islet Cholesterol Accumulation Due to Loss of ABCA1 Leads to Impaired Exocytosis of Insulin Granules , 2011, Diabetes.

[136]  Jacques Fantini,et al.  Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor , 2011, Scientific reports.

[137]  Reinhard Jahn,et al.  Two synaptobrevin molecules are sufficient for vesicle fusion in central nervous system synapses , 2011, Proceedings of the National Academy of Sciences.

[138]  D. Langosch,et al.  Conserved conformational dynamics of membrane fusion protein transmembrane domains and flanking regions indicated by sequence statistics , 2011, Proteins.

[139]  S. Grinstein,et al.  High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine , 2011, The Journal of cell biology.

[140]  M. Jackson,et al.  Release mode of large and small dense-core vesicles specified by different synaptotagmin isoforms in PC12 cells , 2011, Molecular biology of the cell.

[141]  Zachary D. Schultz,et al.  Vibrational spectroscopy of biomembranes. , 2011, Annual review of analytical chemistry.

[142]  P. Berggren,et al.  Munc18-1 and Munc18-2 Proteins Modulate β-Cell Ca2+ Sensitivity and Kinetics of Insulin Exocytosis Differently* , 2011, The Journal of Biological Chemistry.

[143]  S. Hell,et al.  Munc18-1 Tuning of Vesicle Merger and Fusion Pore Properties , 2011, The Journal of Neuroscience.

[144]  H. Grubmüller,et al.  Caught in the Act: Visualization of SNARE‐Mediated Fusion Events in Molecular Detail , 2011, Chembiochem : a European journal of chemical biology.

[145]  M. Schick Membrane Fusion: the Emergence of a New Paradigm , 2011 .

[146]  P. MacDonald,et al.  SUMOylation Regulates Insulin Exocytosis Downstream of Secretory Granule Docking in Rodents and Humans , 2011, Diabetes.

[147]  E. Montanya,et al.  Glucose-dependent changes in SNARE protein levels in pancreatic β-cells. , 2011, Endocrinology.

[148]  G. Charpentier,et al.  Adenylyl cyclase 8 is central to glucagon-like peptide 1 signalling and effects of chronically elevated glucose in rat and human pancreatic beta cells , 2011, Diabetologia.

[149]  M. Laguerre,et al.  A charged prominence in the linker domain of the cysteine‐string protein Cspα mediates its regulated interaction with the calcium sensor synaptotagmin 9 during exocytosis , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[150]  W. Catterall Signaling complexes of voltage-gated sodium and calcium channels , 2010, Neuroscience Letters.

[151]  M. McCarthy Genomics, type 2 diabetes, and obesity. , 2010, The New England journal of medicine.

[152]  T. Südhof,et al.  Neuronal Calcium Sensor Synaptotagmin-9 Is Not Involved in the Regulation of Glucose Homeostasis or Insulin Secretion , 2010, PloS one.

[153]  E. Neher,et al.  Fast Vesicle Fusion in Living Cells Requires at Least Three SNARE Complexes , 2010, Science.

[154]  Alexander M. Walter,et al.  Role of the synaptobrevin C terminus in fusion pore formation , 2010, Proceedings of the National Academy of Sciences.

[155]  W. Hong,et al.  Enhanced Energy Expenditure, Glucose Utilization, and Insulin Sensitivity in VAMP8 Null Mice , 2010, Diabetes.

[156]  F. Ashcroft,et al.  SYMPOSIUM REVIEW: The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet , 2010, The Journal of physiology.

[157]  F. Maxfield,et al.  Cholesterol, the central lipid of mammalian cells. , 2010, Current opinion in cell biology.

[158]  M. Martínez-Salvador,et al.  Transmembrane-domain determinants for SNARE-mediated membrane fusion , 2010, Journal of Cell Science.

[159]  S. Munro,et al.  A Comprehensive Comparison of Transmembrane Domains Reveals Organelle-Specific Properties , 2010, Cell.

[160]  H. Kasai,et al.  SNARE conformational changes that prepare vesicles for exocytosis. , 2010, Cell metabolism.

[161]  B. Desbat,et al.  Effect of monolayer lipid charges on the structure and orientation of protein VAMP1 at the air-water interface. , 2010, Biochimica et biophysica acta.

[162]  R. Mendelsohn,et al.  Infrared reflection-absorption spectroscopy: principles and applications to lipid-protein interaction in Langmuir films. , 2010, Biochimica et biophysica acta.

[163]  M. Kreft,et al.  Fusion pore stability of peptidergic vesicles , 2010, Molecular membrane biology.

[164]  F. W. Tse,et al.  Influence of Cholesterol on Catecholamine Release from the Fusion Pore of Large Dense Core Chromaffin Granules , 2010, The Journal of Neuroscience.

[165]  Harvey T. McMahon,et al.  Membrane Curvature in Synaptic Vesicle Fusion and Beyond , 2010, Cell.

[166]  M. Neville,et al.  Reversibility of metabolic and morphological changes associated with chronic exposure of pancreatic islet β‐cells to fatty acids , 2010, Journal of cellular biochemistry.

[167]  Mathias W. Hofmann,et al.  A solid-state NMR study of changes in lipid phase induced by membrane-fusogenic LV-peptides. , 2010, Biochimica et biophysica acta.

[168]  M. Grzybek,et al.  Measurement of the membrane curvature preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature , 2009, Proceedings of the National Academy of Sciences.

[169]  Boris Lenhard,et al.  Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to HHEX, SOX4, and IRX3 , 2009, Proceedings of the National Academy of Sciences.

[170]  F. Ashcroft,et al.  Chronic Palmitate Exposure Inhibits Insulin Secretion by Dissociation of Ca2+ Channels from Secretory Granules , 2009, Cell metabolism.

[171]  R. Jahn,et al.  Dynamic structure of lipid-bound synaptobrevin suggests a nucleation-propagation mechanism for trans-SNARE complex formation , 2009, Proceedings of the National Academy of Sciences.

[172]  L. F. Waanders,et al.  Quantitative proteomic analysis of single pancreatic islets , 2009, Proceedings of the National Academy of Sciences.

[173]  J. Bogan,et al.  Cholesterol Regulates Glucose-stimulated Insulin Secretion through Phosphatidylinositol 4,5-Bisphosphate* , 2009, The Journal of Biological Chemistry.

[174]  M. Laguerre,et al.  Reversible transition between alpha-helix and beta-sheet conformation of a transmembrane domain. , 2009, Biochimica et biophysica acta.

[175]  Reinhard Jahn,et al.  Helical extension of the neuronal SNARE complex into the membrane , 2009, Nature.

[176]  J. Shillcock,et al.  The fusion of membranes and vesicles: pathway and energy barriers from dissipative particle dynamics. , 2009, Biophysical journal.

[177]  P. MacDonald,et al.  Kiss-and-run exocytosis and fusion pores of secretory vesicles in human β-cells , 2009, Pflügers Archiv - European Journal of Physiology.

[178]  J. Freed,et al.  A scissors mechanism for stimulation of SNARE-mediated lipid mixing by cholesterol , 2009, Proceedings of the National Academy of Sciences.

[179]  P. MacDonald,et al.  SUMOylation regulates Kv2.1 and modulates pancreatic β-cell excitability , 2009, Journal of Cell Science.

[180]  J. Henquin Regulation of insulin secretion: a matter of phase control and amplitude modulation , 2009, Diabetologia.

[181]  Y. Shin,et al.  Fusion step-specific influence of cholesterol on SNARE-mediated membrane fusion. , 2009, Biophysical journal.

[182]  L. Eliasson,et al.  Insulin secretion is highly sensitive to desorption of plasma membrane cholesterol , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[183]  B. Thorens,et al.  Glucose sensing and the pathogenesis of obesity and type 2 diabetes , 2008, International Journal of Obesity.

[184]  C. Sempoux,et al.  Pancreatic β‐cell mass in European subjects with type 2 diabetes , 2008, Diabetes, obesity & metabolism.

[185]  H. Gaisano,et al.  Inhibition of cholesterol biosynthesis impairs insulin secretion and voltage-gated calcium channel function in pancreatic beta-cells. , 2008, Endocrinology.

[186]  M. Verhage,et al.  Vesicle Docking in Regulated Exocytosis , 2008, Traffic.

[187]  A. Heck,et al.  Sequence-specific conformational flexibility of SNARE transmembrane helices probed by hydrogen/deuterium exchange. , 2008, Biophysical journal.

[188]  Michael B Wheeler,et al.  The Identification of Potential Factors Associated with the Development of Type 2 Diabetes , 2008, Molecular & Cellular Proteomics.

[189]  M. Kozlov,et al.  Mechanics of membrane fusion , 2008, Nature Structural &Molecular Biology.

[190]  R. Stevens,et al.  A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. , 2008, Structure.

[191]  S. Barg,et al.  Granule docking and cargo release in pancreatic beta-cells. , 2008, Biochemical Society transactions.

[192]  J. Nagle,et al.  Cholesterol Perturbs Lipid Bilayers Non-Universally , 2008 .

[193]  M. McCarthy,et al.  Genome-wide association studies for complex traits: consensus, uncertainty and challenges , 2008, Nature Reviews Genetics.

[194]  J. Haefliger,et al.  Functional significance of repressor element 1 silencing transcription factor (REST) target genes in pancreatic beta cells , 2008, Diabetologia.

[195]  Mathias W. Hofmann,et al.  Secondary structure and distribution of fusogenic LV-peptides in lipid membranes , 2008, European Biophysics Journal.

[196]  T. Südhof,et al.  Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice , 2008, Proceedings of the National Academy of Sciences.

[197]  Brad J Marsh,et al.  Expedited approaches to whole cell electron tomography and organelle mark-up in situ in high-pressure frozen pancreatic islets. , 2008, Journal of structural biology.

[198]  S. Mariotti,et al.  Search for genetic variants of the SYNTAXIN 1A (STX1A) gene: the −352 A>T variant in the STX1A promoter associates with impaired glucose metabolism in an Italian obese population , 2008, International Journal of Obesity.

[199]  V. Moy,et al.  Atomic force microscope spectroscopy reveals a hemifusion intermediate during soluble N-ethylmaleimide-sensitive factor-attachment protein receptors-mediated membrane fusion. , 2008, Biophysical journal.

[200]  S. Theander,et al.  Synaptotagmin VII splice variants α, β, and δ are expressed in pancreatic β‐cells and regulate insulin exocytosis , 2008 .

[201]  Petra Schwille,et al.  Effect of Line Tension on the Lateral Organization of Lipid Membranes* , 2007, Journal of Biological Chemistry.

[202]  Y. Leung,et al.  SNAREing Voltage-Gated K+ and ATP-Sensitive K+ Channels: Tuning β-Cell Excitability with Syntaxin-1A and Other Exocytotic Proteins. , 2007, Endocrine reviews.

[203]  Claudio Cobelli,et al.  Meal Simulation Model of the Glucose-Insulin System , 2007, IEEE Transactions on Biomedical Engineering.

[204]  Alyssa H. Hasty,et al.  Direct Effect of Cholesterol on Insulin Secretion , 2007, Diabetes.

[205]  S. Rizzoli,et al.  Kiss‐and‐run, Collapse and ‘Readily Retrievable’ Vesicles , 2007, Traffic.

[206]  L. Tamm,et al.  Structure and plasticity of the human immunodeficiency virus gp41 fusion domain in lipid micelles and bilayers. , 2007, Biophysical journal.

[207]  Jean-Charles Sanchez,et al.  Proteomics Analysis of Insulin Secretory Granules*S , 2007, Molecular & Cellular Proteomics.

[208]  M. McCarthy,et al.  Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes , 2007, Science.

[209]  Mica Ohara-Imaizumi,et al.  Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis , 2007, The Journal of cell biology.

[210]  J. Lang,et al.  Distinct roles of the C2A and the C2B domain of the vesicular Ca2+ sensor synaptotagmin 9 in endocrine beta-cells. , 2007, The Biochemical journal.

[211]  H. Kasai,et al.  Exocytic process analyzed with two-photon excitation imaging in endocrine pancreas. , 2007, Endocrine journal.

[212]  F. Pattou,et al.  Glucotoxicity inhibits late steps of insulin exocytosis. , 2007, Endocrinology.

[213]  D. Koppel,et al.  Membrane hemifusion is a stable intermediate of exocytosis. , 2007, Developmental cell.

[214]  Mathias W. Hofmann,et al.  Solid State NMR Investigation of the Interaction between Biomimetic Lipid Bilayers and de novo Designed Fusogenic Peptides , 2007, Chembiochem : a European journal of chemical biology.

[215]  P. MacDonald,et al.  Corelease and Differential Exit via the Fusion Pore of GABA, Serotonin, and ATP from LDCV in Rat Pancreatic β Cells , 2007, The Journal of general physiology.

[216]  James D. Johnson,et al.  β-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment , 2007, Nature Medicine.

[217]  A. Hémar,et al.  The calcium-sensing protein synaptotagmin 7 is expressed on different endosomal compartments in endocrine, neuroendocrine cells or neurons but not on large dense core vesicles , 2007, Histochemistry and Cell Biology.

[218]  S. Kahn,et al.  Mechanisms linking obesity to insulin resistance and type 2 diabetes , 2006, Nature.

[219]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[220]  M. Kozlov,et al.  Membranes of the world unite! , 2006, The Journal of cell biology.

[221]  L M Zampighi,et al.  Conical electron tomography of a chemical synapse: vesicles docked to the active zone are hemi-fused. , 2006, Biophysical journal.

[222]  P. Janmey,et al.  Biophysical properties of lipids and dynamic membranes. , 2006, Trends in cell biology.

[223]  P. MacDonald,et al.  Release of small transmitters through kiss-and-run fusion pores in rat pancreatic beta cells. , 2006, Cell metabolism.

[224]  Tao Xu,et al.  Silence of synaptotagmin I in INS-1 cells inhibits fast exocytosis and fast endocytosis. , 2006, Biochemical and biophysical research communications.

[225]  A. Brunger,et al.  Conformation of the synaptobrevin transmembrane domain. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[226]  Y. Loh,et al.  Abnormal sterols in cholesterol-deficiency diseases cause secretory granule malformation and decreased membrane curvature , 2006, Journal of Cell Science.

[227]  S. Tooze,et al.  Synaptotagmin IV is necessary for the maturation of secretory granules in PC12 cells , 2006, The Journal of cell biology.

[228]  J. Ngsee,et al.  Cholesterol is required for efficient endoplasmic reticulum-to-Golgi transport of secretory membrane proteins. , 2006, Molecular biology of the cell.

[229]  K. Fleming,et al.  Alternate interfaces may mediate homomeric and heteromeric assembly in the transmembrane domains of SNARE proteins. , 2006, Journal of molecular biology.

[230]  Y. Shin,et al.  Transmembrane organization of yeast syntaxin-analogue Sso1p. , 2006, Biochemistry.

[231]  T. Bártfai,et al.  Impaired gene and protein expression of exocytotic soluble N-ethylmaleimide attachment protein receptor complex proteins in pancreatic islets of type 2 diabetic patients. , 2006, Diabetes.

[232]  H. Kasai,et al.  Rapid glucose sensing by protein kinase A for insulin exocytosis in mouse pancreatic islets , 2006, The Journal of physiology.

[233]  Patrik Rorsman,et al.  Glucose-sensing mechanisms in pancreatic β-cells , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[234]  N. Andrews,et al.  There's more to life than neurotransmission: the regulation of exocytosis by synaptotagmin VII. , 2005, Trends in cell biology.

[235]  J. Coorssen,et al.  Cholesterol facilitates the native mechanism of Ca2+-triggered membrane fusion , 2005, Journal of Cell Science.

[236]  Khajak Berberian,et al.  Electrochemical imaging of fusion pore openings by electrochemical detector arrays. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[237]  L. Eliasson,et al.  Adenovirus‐mediated silencing of Synaptotagmin 9 inhibits Ca2+‐dependent insulin secretion in islets , 2005, FEBS letters.

[238]  Fan Zhang,et al.  Membrane Fusion Induced by Neuronal SNAREs Transits through Hemifusion*[boxs] , 2005, Journal of Biological Chemistry.

[239]  J. Rothman,et al.  SNAREs can promote complete fusion and hemifusion as alternative outcomes , 2005, The Journal of cell biology.

[240]  R. Jernigan,et al.  GOR V server for protein secondary structure prediction , 2005, Bioinform..

[241]  Y. Shin,et al.  A Partially Zipped SNARE Complex Stabilized by the Membrane* , 2005, Journal of Biological Chemistry.

[242]  Fan Zhang,et al.  Hemifusion in SNARE-mediated membrane fusion , 2005, Nature Structural &Molecular Biology.

[243]  M. Jackson,et al.  Electrostatic interactions between the syntaxin membrane anchor and neurotransmitter passing through the fusion pore. , 2005, Biophysical journal.

[244]  L. Eliasson,et al.  Regulated exocytosis and kiss-and-run of synaptic-like microvesicles in INS-1 and primary rat beta-cells. , 2005, Diabetes.

[245]  Reinhard Lipowsky,et al.  Tension-induced fusion of bilayer membranes and vesicles , 2005, Nature materials.

[246]  K. Broadie,et al.  Lipid regulation of the synaptic vesicle cycle , 2005, Nature Reviews Neuroscience.

[247]  Kuang Lin,et al.  A simple and fast secondary structure prediction method using hidden neural networks , 2005, Bioinform..

[248]  P. Rorsman,et al.  CaV2.3 calcium channels control second-phase insulin release. , 2005, The Journal of clinical investigation.

[249]  W. Almers,et al.  Tracking SNARE Complex Formation in Live Endocrine Cells , 2004, Science.

[250]  J. Coorssen,et al.  Comment on "Transmembrane Segments of Syntaxin Line the Fusion Pore of Ca2+-Triggered Exocytosis" , 2004, Science.

[251]  Mathias W. Hofmann,et al.  De novo design of conformationally flexible transmembrane peptides driving membrane fusion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[252]  W. Almers,et al.  Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells , 2004, The Journal of physiology.

[253]  P. Gilon,et al.  Increased glucose sensitivity of both triggering and amplifying pathways of insulin secretion in rat islets cultured for 1 wk in high glucose. , 2004, American journal of physiology. Endocrinology and metabolism.

[254]  A. Yamamoto,et al.  Effect of forskolin on synaptotagmin IV protein trafficking in PC12 cells. , 2004, Journal of biochemistry.

[255]  C. Wollheim,et al.  Synaptotagmin V and IX isoforms control Ca2+-dependent insulin exocytosis , 2004, Journal of Cell Science.

[256]  W. Almers,et al.  Bilayers merge even when exocytosis is transient. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[257]  L. Tamm,et al.  Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. , 2004, Biophysical journal.

[258]  M. Jackson,et al.  Transmembrane Segments of Syntaxin Line the Fusion Pore of Ca2+-Triggered Exocytosis , 2004, Science.

[259]  D. Langosch,et al.  Synaptobrevin transmembrane domain dimerization-revisited. , 2004, Biochemistry.

[260]  L. Chamberlain,et al.  Lipid Rafts and the Regulation of Exocytosis , 2004, Traffic.

[261]  J. Rothman,et al.  Countercurrent distribution of two distinct SNARE complexes mediating transport within the Golgi stack. , 2004, Molecular biology of the cell.

[262]  B. Wolf,et al.  Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects. , 2004, Diabetes.

[263]  Y. Shin,et al.  Constitutive versus regulated SNARE assembly: a structural basis , 2004, The EMBO journal.

[264]  T. Südhof,et al.  Unexpected Ca2+-binding properties of synaptotagmin 9. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[265]  A. Ewing,et al.  The Effects of Vesicular Volume on Secretion through the Fusion Pore in Exocytotic Release from PC12 Cells , 2004, The Journal of Neuroscience.

[266]  J. Helms,et al.  Intra-Golgi Protein Transport Depends on a Cholesterol Balance in the Lipid Membrane* , 2003, Journal of Biological Chemistry.

[267]  P. Schwille,et al.  Lipid dynamics and domain formation in model membranes composed of ternary mixtures of unsaturated and saturated phosphatidylcholines and cholesterol. , 2003, Biophysical journal.

[268]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[269]  R. Burgoyne,et al.  Tying Everything Together: The Multiple Roles of Cysteine String Protein (CSP) in Regulated Exocytosis , 2003, Traffic.

[270]  P. Rorsman,et al.  Insulin granule dynamics in pancreatic beta cells , 2003, Diabetologia.

[271]  E. Goormaghtigh,et al.  Attenuated total reflection IR spectroscopy as a tool to investigate the orientation and tertiary structure changes in fusion proteins. , 2003, Biochimica et biophysica acta.

[272]  Sharon Tsuk,et al.  Syntaxin 1A Binds to the Cytoplasmic C Terminus of Kv2.1 to Regulate Channel Gating and Trafficking* , 2003, The Journal of Biological Chemistry.

[273]  Y. Shin,et al.  Insertion of the Membrane-proximal Region of the Neuronal SNARE Coiled Coil into the Membrane* , 2003, The Journal of Biological Chemistry.

[274]  Robert A. Rizza,et al.  β-Cell Deficit and Increased β-Cell Apoptosis in Humans With Type 2 Diabetes , 2003, Diabetes.

[275]  D. Engelman,et al.  Mutational analysis of synaptobrevin transmembrane domain oligomerization. , 2002, Biochemistry.

[276]  Yonathan Kozlovsky,et al.  Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm. , 2002, Biophysical journal.

[277]  M. Wheeler,et al.  Abnormal expression of pancreatic islet exocytotic soluble N-ethylmaleimide-sensitive factor attachment protein receptors in Goto-Kakizaki rats is partially restored by phlorizin treatment and accentuated by high glucose treatment. , 2002, Endocrinology.

[278]  Y. Shin,et al.  Membrane topologies of neuronal SNARE folding intermediates. , 2002, Biochemistry.

[279]  J. Rothman,et al.  Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins , 2002, The Journal of cell biology.

[280]  G. Boden Interaction between free fatty acids and glucose metabolism , 2002, Current opinion in clinical nutrition and metabolic care.

[281]  Haruo Kasai,et al.  Fusion Pore Dynamics and Insulin Granule Exocytosis in the Pancreatic Islet , 2002, Science.

[282]  Y. Shin,et al.  The membrane-dipped neuronal SNARE complex: a site-directed spin labeling electron paramagnetic resonance study. , 2002, Biochemistry.

[283]  Y. Shin,et al.  The Four-helix Bundle of the Neuronal Target Membrane SNARE Complex Is Neither Disordered in the Middle nor Uncoiled at the C-terminal Region* , 2002, The Journal of Biological Chemistry.

[284]  M. Jackson,et al.  Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals , 2002, Nature.

[285]  N. Diamant,et al.  Modulation of L-type Ca(2+) channels by distinct domains within SNAP-25. , 2002, Diabetes.

[286]  N. Mohandas,et al.  Identification of a functional role for lipid asymmetry in biological membranes: Phosphatidylserine-skeletal protein interactions modulate membrane stability , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[287]  V. Markin,et al.  Membrane fusion: stalk model revisited. , 2002, Biophysical journal.

[288]  Erol Cerasi,et al.  Modeling phasic insulin release: immediate and time-dependent effects of glucose. , 2002, Diabetes.

[289]  D. Engelman,et al.  Computation and mutagenesis suggest a right‐handed structure for the synaptobrevin transmembrane dimer , 2001, Proteins.

[290]  T. Sanke,et al.  Single nucleotide polymorphism (D68D, T to C) in the syntaxin 1A gene correlates to age at onset and insulin requirement in Type II diabetic patients , 2001, Diabetologia.

[291]  M. Frick,et al.  Fusion pore expansion is a slow, discontinuous, and Ca2+-dependent process regulating secretion from alveolar type II cells , 2001, The Journal of cell biology.

[292]  J. Reed,et al.  Peptide mimics of SNARE transmembrane segments drive membrane fusion depending on their conformational plasticity. , 2001, Journal of molecular biology.

[293]  R. Scheller,et al.  Three SNARE complexes cooperate to mediate membrane fusion , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[294]  F S Cohen,et al.  A quantitative model for membrane fusion based on low-energy intermediates , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[295]  F. Wendler,et al.  Homotypic fusion of immature secretory granules during maturation requires syntaxin 6. , 2001, Molecular biology of the cell.

[296]  K. Mikoshiba,et al.  Expression and localisation of synaptotagmin isoforms in endocrine beta-cells: their function in insulin exocytosis. , 2001, Journal of cell science.

[297]  D. Bruns,et al.  SNAREs are concentrated in cholesterol‐dependent clusters that define docking and fusion sites for exocytosis , 2001, The EMBO journal.

[298]  P. Cullis,et al.  Roles of lipid polymorphism in intracellular delivery. , 2001, Advanced drug delivery reviews.

[299]  W. Xiao,et al.  The neuronal t-SNARE complex is a parallel four-helix bundle , 2001, Nature Structural Biology.

[300]  R. J. Fisher,et al.  Control of fusion pore dynamics during exocytosis by Munc18. , 2001, Science.

[301]  Matthias Mann,et al.  Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion , 2001, Nature.

[302]  V. Papadopoulos,et al.  Cholesterol binding at the cholesterol recognition/ interaction amino acid consensus (CRAC) of the peripheral-type benzodiazepine receptor and inhibition of steroidogenesis by an HIV TAT-CRAC peptide. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[303]  W. DeGrado,et al.  Polar side chains drive the association of model transmembrane peptides. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[304]  Wei Zhang,et al.  Munc-18 Associates with Syntaxin and Serves as a Negative Regulator of Exocytosis in the Pancreatic β-Cell* , 2000, The Journal of Biological Chemistry.

[305]  W. Huttner,et al.  Cholesterol is Required for the Formation of Regulated and Constitutive Secretory Vesicles from the trans‐Golgi Network , 2000, Traffic.

[306]  A. Oliva,et al.  Development of two high-performance liquid chromatographic methods for the analysis and characterization of insulin and its degradation products in pharmaceutical preparations. , 2000, Journal of chromatography. B, Biomedical sciences and applications.

[307]  Misuzu Baba,et al.  Geranylgeranylated Snares Are Dominant Inhibitors of Membrane Fusion , 2000, The Journal of cell biology.

[308]  Y. Loh,et al.  Lipid Raft Association of Carboxypeptidase E Is Necessary for Its Function as a Regulated Secretory Pathway Sorting Receptor* , 2000, The Journal of Biological Chemistry.

[309]  P. Halban,et al.  Trafficking/sorting and granule biogenesis in the beta-cell. , 2000, Seminars in cell & developmental biology.

[310]  J. Rothman,et al.  Close Is Not Enough , 2000, The Journal of cell biology.

[311]  D. Langosch,et al.  A Conserved Membrane-spanning Amino Acid Motif Drives Homomeric and Supports Heteromeric Assembly of Presynaptic SNARE Proteins* , 2000, The Journal of Biological Chemistry.

[312]  S. Yang,et al.  Synaptotagmin III isoform is compartmentalized in pancreatic beta-cells and has a functional role in exocytosis. , 2000, Diabetes.

[313]  R. Burgoyne,et al.  Comparison of Cysteine String Protein (Csp) and Mutant α-SNAP Overexpression Reveals a Role for Csp in Late Steps of Membrane Fusion in Dense-Core Granule Exocytosis in Adrenal Chromaffin Cells , 2000, The Journal of Neuroscience.

[314]  C. Bogardus,et al.  The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. , 1999, The Journal of clinical investigation.

[315]  O. Larsson,et al.  Syntaxin 1 interacts with the LD subtype of voltage-gated Ca2+ channels in pancreatic β cells , 1999 .

[316]  L. Eliasson,et al.  CaM kinase II‐dependent mobilization of secretory granules underlies acetylcholine‐induced stimulation of exocytosis in mouse pancreatic B‐cells , 1999, The Journal of physiology.

[317]  R. Scheller,et al.  Vesicle-associated membrane protein 4 is implicated in trans-Golgi network vesicle trafficking. , 1999, Molecular biology of the cell.

[318]  R. Burgoyne,et al.  Mutational analysis of cysteine-string protein function in insulin exocytosis. , 1999, Journal of cell science.

[319]  D. Atlas,et al.  The voltage sensitive Lc-type Ca2+ channel is functionally coupled to the exocytotic machinery. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[320]  A. Brunger,et al.  Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[321]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[322]  W. Xiao,et al.  The synaptic SNARE complex is a parallel four-stranded helical bundle , 1998, Nature Structural Biology.

[323]  M. Lindau,et al.  Fusion pore expansion in horse eosinophils is modulated by Ca2+ and protein kinase C via distinct mechanisms , 1998, The EMBO journal.

[324]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[325]  P. Bronk,et al.  The Pathway of Membrane Fusion Catalyzed by Influenza Hemagglutinin: Restriction of Lipids, Hemifusion, and Lipidic Fusion Pore Formation , 1998, The Journal of cell biology.

[326]  J. Zimmerberg,et al.  Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[327]  Hui Zhang,et al.  Transient expression of botulinum neurotoxin C1 light chain differentially inhibits calcium and glucose induced insulin secretion in clonal β‐cells , 1997, FEBS letters.

[328]  S. Nagamatsu,et al.  Non‐functional role of syntaxin 2 in insulin exocytosis by pancreatic β cells , 1997, Cell biochemistry and function.

[329]  S. Seino,et al.  Localization and Functional Role of Synaptotagmin III in Insulin Secretory Vesicles in Pancreatic β-Cells , 1997, Diabetes.

[330]  G. Alvarez de Toledo,et al.  The exocytotic event in chromaffin cells revealed by patch amperometry , 1997, Nature.

[331]  K. Mikoshiba,et al.  The first C2 domain of synaptotagmin is required for exocytosis of insulin from pancreatic β‐cells: action of synaptotagmin at low micromolar calcium , 1997, The EMBO journal.

[332]  D. Langosch,et al.  Dimerization of the synaptic vesicle protein synaptobrevin (vesicle-associated membrane protein) II depends on specific residues within the transmembrane segment. , 1997, European journal of biochemistry.

[333]  L. Eliasson,et al.  Rapid ATP‐Dependent Priming of Secretory Granules Precedes Ca2+ ‐Induced Exocytosis in Mouse Pancreatic B‐Cells , 1997, The Journal of physiology.

[334]  J. Rothman,et al.  Ykt6p, a Prenylated SNARE Essential for Endoplasmic Reticulum-Golgi Transport* , 1997, The Journal of Biological Chemistry.

[335]  M. Prentki,et al.  Induction by Glucose of Genes Coding for Glycolytic Enzymes in a Pancreatic β-Cell Line (INS-1)* , 1997, The Journal of Biological Chemistry.

[336]  D. Pipeleers,et al.  Prolonged exposure of human beta cells to elevated glucose levels results in sustained cellular activation leading to a loss of glucose regulation. , 1996, The Journal of clinical investigation.

[337]  D. Pipeleers,et al.  Effects of Chronically Elevated Glucose Levels on the Functional Properties of Rat Pancreatic β-Cells , 1996, Diabetes.

[338]  H. Ginsberg Diabetic Dyslipidemia: Basic Mechanisms Underlying the Common Hypertriglyceridemia and Low HDL Cholesterol Levels , 1996, Diabetes.

[339]  K. Mikoshiba,et al.  Phospholipid Composition Dependence of Ca-dependent Phospholipid Binding to the C2A Domain of Synaptotagmin IV (*) , 1996, The Journal of Biological Chemistry.

[340]  G. Grondin,et al.  Characterization of SNARE protein expression in beta cell lines and pancreatic islets. , 1996, Endocrinology.

[341]  C. Wollheim,et al.  Soluble N-ethylmaleimide-sensitive-factor attachment protein and N-ethylmaleimide-insensitive factors are required for Ca2+-stimulated exocytosis of insulin. , 1996, The Biochemical journal.

[342]  J. White,et al.  GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes , 1995, The Journal of cell biology.

[343]  S. Tatulian,et al.  Influenza hemagglutinin assumes a tilted conformation during membrane fusion as determined by attenuated total reflection FTIR spectroscopy. , 1995, The EMBO journal.

[344]  Thomas C. Südhof,et al.  Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins , 1995, Nature.

[345]  B. Thorens,et al.  VAMP‐2 and cellubrevin are expressed in pancreatic beta‐cells and are essential for Ca(2+)‐but not for GTP gamma S‐induced insulin secretion. , 1995, The EMBO journal.

[346]  M. Lindau,et al.  A novel Ca2+‐dependent step in exocytosis subsequent to vesicle fusion , 1995, FEBS letters.

[347]  R. Fernández-Chacón,et al.  Cytosolic calcium facilitates release of secretory products after exocytotic vesicle fusion , 1995, FEBS letters.

[348]  M. Lindau,et al.  The exocytotic fusion pore of small granules has a conductance similar to an ion channel , 1995, The Journal of cell biology.

[349]  P. Halban,et al.  SNAP-25 is expressed in islets of Langerhans and is involved in insulin release , 1995, The Journal of cell biology.

[350]  R. Scheller,et al.  Identification of synaptic proteins and their isoform mRNAs in compartments of pancreatic endocrine cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[351]  Judith M. White,et al.  Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion , 1994, Cell.

[352]  Mark K. Bennett,et al.  A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion , 1993, Cell.

[353]  R. Lipowsky,et al.  Domain-induced budding of vesicles. , 1993, Physical review letters.

[354]  W. Almers,et al.  Membrane flux through the pore formed by a fusogenic viral envelope protein during cell fusion , 1993, The Journal of cell biology.

[355]  P. Munson,et al.  Exocytotic fusion pores exhibit semi-stable states , 1993, The Journal of Membrane Biology.

[356]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[357]  R. Zucker,et al.  Multiple calcium-dependent processes related to secretion in bovine chromaffin cells , 1993, Neuron.

[358]  A. Oberhauser,et al.  The exocytotic fusion pore modeled as a lipidic pore. , 1992, Biophysical journal.

[359]  J. Israelachvili,et al.  Role of hydrophobic forces in bilayer adhesion and fusion. , 1992, Biochemistry.

[360]  P. De Camilli,et al.  GABA and pancreatic beta‐cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic‐like microvesicles suggests their role in GABA storage and secretion. , 1991, The EMBO journal.

[361]  T. E. Thompson,et al.  Modulation of phospholipid acyl chain order by cholesterol. A solid-state 2H nuclear magnetic resonance study. , 1990, Biochemistry.

[362]  J. R. Monck,et al.  Tension in secretory granule membranes causes extensive membrane transfer through the exocytotic fusion pore. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[363]  W. Almers,et al.  Transmitter release from synapses: Does a preassembled fusion pore initiate exocytosis? , 1990, Neuron.

[364]  M. Zuckermann,et al.  Theory of thermal anomalies in the specific heat of lipid bilayers containing cholesterol. , 1989, Biophysical journal.

[365]  Benjamin S. Glick,et al.  Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack , 1988, Cell.

[366]  W. DeGrado,et al.  Synthetic amphiphilic peptide models for protein ion channels. , 1988, Science.

[367]  Richard G. W. Anderson,et al.  Proteolytic maturation of insulin is a post-Golgi event which occurs in acidifying clathrin-coated secretory vesicles , 1987, Cell.

[368]  W. Almers,et al.  Final steps in exocytosis observed in a cell with giant secretory granules. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[369]  A. A. Spector,et al.  Membrane lipid composition and cellular function. , 1985, Journal of lipid research.

[370]  Kozlov Mm,et al.  Possible mechanism of membrane fusion , 1983 .

[371]  R. Mcgee,et al.  The effects of membrane fatty acid modification of clonal pheochromocytoma cells on depolarization-dependent exocytosis. , 1982, The Journal of biological chemistry.

[372]  M. Dennis,et al.  Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release , 1979, The Journal of cell biology.

[373]  M. Shinitzky,et al.  Factors influencing the lipid composition and fluidity of red cell membranes in vitro: production of red cells possessing more than two cholesterols per phospholipid. , 1978, Biochemistry.

[374]  M Berman,et al.  A model of the kinetics of insulin in man. , 1974, The Journal of clinical investigation.

[375]  B. Chance,et al.  Fluorescent probe analysis of the lipid architecture of natural and experimental cholesterol-rich membranes. , 1974, Biochemistry.

[376]  H. Otto,et al.  Electron microscope studies on the intestine using ruthenium red , 1974, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[377]  V. Chambers THE USE OF RUTHENIUM RED IN AN ELECTRON MICROSCOPE STUDY OF CYTOPHAGOCYTOSIS , 1973, The Journal of cell biology.

[378]  A. Mauro,et al.  TURNOVER OF TRANSMITTER AND SYNAPTIC VESICLES AT THE FROG NEUROMUSCULAR JUNCTION , 1973, The Journal of cell biology.

[379]  G. Grodsky,et al.  Adenosine 3',5'-Monophosphate in Pancreatic Islets: Glucose-Induced Insulin Release , 1973, Science.

[380]  D. Hodgkin The Structure of Insulin , 1972, Diabetes.

[381]  S. Singer,et al.  The Fluid Mosaic Model of the Structure of Cell Membranes , 1972, Science.

[382]  O. Grynszpan-Winograd Morphological Aspects of Exocytosis in the Adrenal Medulla , 1971 .

[383]  W. Douglas,et al.  Stimulus‐secretion coupling: the concept and clues from chromaffin and other cells , 1968, British journal of pharmacology.

[384]  G. Grodsky,et al.  Dynamics of insulin secretion by the perfused rat pancreas. , 1968, Endocrinology.

[385]  C. Amatore,et al.  ‘Full fusion’ is not ineluctable during vesicular exocytosis of neurotransmitters by endocrine cells , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[386]  Peter Beike,et al.  Intermolecular And Surface Forces , 2016 .

[387]  Y. Smirnova,et al.  Mechanics of membrane fusion/pore formation. , 2015, Chemistry and physics of lipids.

[388]  L. Groop,et al.  Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes. , 2013 .

[389]  T. Martin Role of PI(4,5)P(2) in vesicle exocytosis and membrane fusion. , 2012, Sub-cellular biochemistry.

[390]  B. Marsh,et al.  Mapping the β-Cell in 3D at the Nanoscale Using Novel Cellular Electron Tomography and Computational Approaches , 2011 .

[391]  Alexander M. Walter,et al.  Role of the Synaptobrevin C-terminus in Fusion Pore Formation , 2010 .

[392]  J. Pessin,et al.  Insulin granule biogenesis, trafficking and exocytosis. , 2009, Vitamins and hormones.

[393]  S. Theander,et al.  Synaptotagmin VII splice variants alpha, beta, and delta are expressed in pancreatic beta-cells and regulate insulin exocytosis. , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[394]  Peter Almgren,et al.  Predictors of and longitudinal changes in insulin sensitivity and secretion preceding onset of type 2 diabetes. , 2005, Diabetes.

[395]  R. Russell,et al.  Amino Acid Properties and Consequences of Substitutions , 2003 .

[396]  Thorsten Lang,et al.  Membrane fusion. , 2002, Current opinion in cell biology.

[397]  Jian Ni,et al.  Localization of cellubrevin-related peptide, endobrevin, in the early endosome in pancreatic beta cells and its physiological function in exo-endocytosis of secretory granules. , 2001, Journal of cell science.

[398]  J. Lang Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. , 1999, European journal of biochemistry.

[399]  W. Wimley,et al.  Membrane protein folding and stability: physical principles. , 1999, Annual review of biophysics and biomolecular structure.

[400]  W. Dowhan,et al.  Molecular basis for membrane phospholipid diversity: why are there so many lipids? , 1997, Annual review of biochemistry.

[401]  W. Almers,et al.  Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. , 1995, Current opinion in cell biology.

[402]  M. Lindau,et al.  The membrane fusion events in degranulating guinea pig eosinophils. , 1993, Journal of cell science.

[403]  R. Rand,et al.  Effects of cholesterol on the structural transitions induced by diacylglycerol in phosphatidylcholine and phosphatidylethanolamine bilayer systems. , 1990, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[404]  W. Almers,et al.  Currents through the fusion pore that forms during exocytosis of a secretory vesicle , 1987, Nature.

[405]  M. Kozlov,et al.  [Theory of hydrophobic ion adsorption in bilayer lipid membranes taking into account their lateral interaction and charge discreteness]. , 1983, Biofizika.

[406]  P. Y. Chou,et al.  Empirical predictions of protein conformation. , 1978, Annual review of biochemistry.

[407]  R. Azzam,et al.  Ellipsometry and polarized light , 1977 .

[408]  D. Hodgkin The Banting Memorial Lecture 1972. The structure of insulin. , 1972, Diabetes.

[409]  H. Landahl,et al.  A two-compartmental model for insulin secretion. , 1970, Advances in metabolic disorders.

[410]  M. Jarvelin,et al.  References and Notes Supporting Online Material Materials and Methods Som Text Figs. S1 to S7 References a Common Variant in the Fto Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity , 2022 .