Deep reinforcement learning for universal quantum state preparation via dynamic pulse control.

Accurate and efficient preparation of quantum states is a core issue in building a quantum computer. In this paper, we propose a scheme to prepare a certain single or two-qubit state from an arbitrary initial state in semiconductor double quantum dots. With the aid of deep reinforcement learning the suitable exchange couplings between electrons can be obtained via automatically designing electric pulses. The universal advantage of our scheme is that once the network is trained for the target state, it can be used for an arbitrary initial state and repeated retraining of the network for new initial states is avoided. Furthermore, we find that our scheme is robust against static and dynamic fluctuations, such as charge and nuclear noises.

[1]  A. Yacoby,et al.  Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits , 2012, Science.

[2]  Jorge Nocedal,et al.  Optimization Methods for Large-Scale Machine Learning , 2016, SIAM Rev..

[3]  R. Hanson,et al.  Diamond NV centers for quantum computing and quantum networks , 2013 .

[4]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[5]  Xin Wang,et al.  Improving the gate fidelity of capacitively coupled spin qubits , 2014, npj Quantum Information.

[6]  Marin Bukov,et al.  Reinforcement learning for autonomous preparation of Floquet-engineered states: Inverting the quantum Kapitza oscillator , 2018, Physical Review B.

[7]  Shai Ben-David,et al.  Understanding Machine Learning: From Theory to Algorithms , 2014 .

[8]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[9]  A. Gossard,et al.  Charge-state conditional operation of a spin qubit. , 2011, Physical review letters.

[10]  Edwin Barnes,et al.  Composite pulses for robust universal control of singlet–triplet qubits , 2012, Nature Communications.

[11]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[12]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[13]  Xin Wang,et al.  Noise-resistant control for a spin qubit array. , 2013, Physical review letters.

[14]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[15]  Stanislav Straupe,et al.  Experimental neural network enhanced quantum tomography , 2019, npj Quantum Information.

[16]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[17]  Zhan Shi,et al.  Two-axis control of a singlet–triplet qubit with an integrated micromagnet , 2014, Proceedings of the National Academy of Sciences.

[18]  Yoshua Bengio,et al.  Deep Sparse Rectifier Neural Networks , 2011, AISTATS.

[19]  Alex Graves,et al.  Playing Atari with Deep Reinforcement Learning , 2013, ArXiv.

[20]  Andrew S. Dzurak,et al.  Fidelity benchmarks for two-qubit gates in silicon , 2018, Nature.

[21]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[22]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[23]  Artificial intelligence enhanced two-dimensional nanoscale nuclear magnetic resonance spectroscopy , 2020 .

[24]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[25]  L. Lamata,et al.  From transistor to trapped-ion computers for quantum chemistry , 2013, Scientific Reports.

[26]  Robert Keil,et al.  Perfect transfer of path-entangled photons in J x photonic lattices , 2013 .

[27]  M. Yung,et al.  Neural-network-designed pulse sequences for robust control of singlet-Triplet qubits , 2017, 1708.00238.

[28]  DiVincenzo,et al.  Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[29]  R. Feynman Simulating physics with computers , 1999 .

[30]  Xin Wang,et al.  Automatic spin-chain learning to explore the quantum speed limit , 2018, Physical Review A.

[31]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[32]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[33]  S. Sarma,et al.  Impurity effects on semiconductor quantum bits in coupled quantum dots , 2011, 1103.0767.

[34]  Jacob M. Taylor,et al.  Resonantly driven CNOT gate for electron spins , 2018, Science.

[35]  Xin Wang,et al.  When does reinforcement learning stand out in quantum control? A comparative study on state preparation , 2019, npj Quantum Information.

[36]  Adele E. Schmitz,et al.  Coherent singlet-triplet oscillations in a silicon-based double quantum dot , 2012, Nature.

[37]  Jun Li,et al.  Optimizing adiabatic quantum pathways via a learning algorithm , 2020, 2006.15300.

[38]  Roberto Osellame,et al.  Experimental perfect state transfer of an entangled photonic qubit , 2016, Nature Communications.

[39]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[40]  Saeed Fallahi,et al.  Notch filtering the nuclear environment of a spin qubit. , 2016, Nature nanotechnology.

[41]  Pankaj Mehta,et al.  Reinforcement Learning in Different Phases of Quantum Control , 2017, Physical Review X.

[42]  Saeed Fallahi,et al.  High-fidelity entangling gate for double-quantum-dot spin qubits , 2016, 1608.04258.

[43]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[44]  Levente J. Klein,et al.  Spin-Based Quantum Dot Quantum Computing in Silicon , 2004, Quantum Inf. Process..

[45]  S. Das Sarma,et al.  Nonperturbative master equation solution of central spin dephasing dynamics. , 2012, Physical review letters.

[46]  Marcello Benedetti,et al.  Parameterized quantum circuits as machine learning models , 2019, Quantum Science and Technology.

[47]  Xin Wang,et al.  Fast pulse sequences for dynamically corrected gates in singlet-triplet qubits , 2017, 1709.02808.

[48]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[49]  Xin Wang,et al.  Robust quantum gates for singlet-triplet spin qubits using composite pulses , 2013, 1312.4523.

[50]  Leong-Chuan Kwek,et al.  Machine Learning meets Quantum Foundations: A Brief Survey , 2020 .

[51]  Alexey V. Gorshkov,et al.  Non-local propagation of correlations in quantum systems with long-range interactions , 2014, Nature.

[52]  J. Verduijn Silicon Quantum Electronics , 2012 .

[53]  Xiaopeng Li,et al.  Quantum adiabatic algorithm design using reinforcement learning , 2020 .

[54]  Jacob M. Taylor,et al.  Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins , 2005 .

[55]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[56]  G. M. Nikolopoulos,et al.  Faithful communication Hamiltonian in photonic lattices. , 2012, Optics letters.