Characterization of a thermotolerant ROK-type mannofructokinase from Streptococcus mitis: application to the synthesis of phosphorylated sugars

[1]  H. Weber,et al.  Biochemical Characterization and Mechanistic Analysis of the Levoglucosan Kinase from Lipomyces starkeyi , 2018, Chembiochem : a European journal of chemical biology.

[2]  A. Liese,et al.  Biocatalytic Phosphorylations of Metabolites: Past, Present, and Future. , 2017, Trends in biotechnology.

[3]  K. Bastard,et al.  Expanding the reaction space of aldolases using hydroxypyruvate as a nucleophilic substrate , 2017 .

[4]  Peer Bork,et al.  Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees , 2016, Nucleic Acids Res..

[5]  Uwe T Bornscheuer,et al.  Biocatalysis: Successfully Crossing Boundaries. , 2016, Angewandte Chemie.

[6]  Jung-Min Choi,et al.  Industrial applications of enzyme biocatalysis: Current status and future aspects. , 2015, Biotechnology advances.

[7]  J. Littlechild Enzymes from Extreme Environments and Their Industrial Applications , 2015, Front. Bioeng. Biotechnol..

[8]  Marcel Salanoubat,et al.  Genome Mining for Innovative Biocatalysts: New Dihydroxyacetone Aldolases for the Chemist’s Toolbox , 2015 .

[9]  V. Berardinis,et al.  Straightforward Synthesis of Terminally Phosphorylated L‐Sugars via Multienzymatic Cascade Reactions , 2015 .

[10]  Garabed Antranikian,et al.  Extremozymes--biocatalysts with unique properties from extremophilic microorganisms. , 2014, Current opinion in biotechnology.

[11]  P. Clapés,et al.  Efficient biocatalytic processes for highly valuable terminally phosphorylated C5 to C9 D-ketoses , 2014 .

[12]  Shoshana D. Brown,et al.  Discovery of new enzymes and metabolic pathways using structure and genome context , 2013, Nature.

[13]  W. Tong,et al.  Thermal Stability of Glucokinases in Thermoanaerobacter tengcongensis , 2013, BioMed research international.

[14]  J. Weissenbach,et al.  Nitrilase Activity Screening on Structurally Diverse Substrates: Providing Biocatalytic Tools for Organic Synthesis , 2013 .

[15]  Uwe T Bornscheuer,et al.  Strategies for the discovery and engineering of enzymes for biocatalysis. , 2013, Current opinion in chemical biology.

[16]  Israel Sánchez-Moreno,et al.  One-Pot Cascade Reactions using Fructose-6-phosphate Aldolase: Efficient Synthesis of D-Arabinose 5-Phosphate, D-Fructose 6-Phosphate and Analogues , 2012 .

[17]  L. Salmon,et al.  Synthesis and evaluation of malonate-based inhibitors of phosphosugar-metabolizing enzymes: class II fructose-1,6-bis-phosphate aldolases, type I phosphomannose isomerase, and phosphoglucose isomerase. , 2012, Bioorganic & medicinal chemistry.

[18]  R. Reynaud,et al.  The Chemistry of L‐Sorbose , 2011 .

[19]  A. Joachimiak,et al.  Structural studies of ROK fructokinase YdhR from Bacillus subtilis: insights into substrate binding and fructose specificity. , 2011, Journal of molecular biology.

[20]  Steven M. Thompson,et al.  Evolutionary Bases of Carbohydrate Recognition and Substrate Discrimination in the ROK Protein Family , 2010, Journal of Molecular Evolution.

[21]  Roland Wohlgemuth C2-Ketol elongation by transketolase-catalyzed asymmetric synthesis , 2009 .

[22]  F. Charmantray,et al.  Preparative scale enzymatic synthesis of D-sedoheptulose-7-phosphate from β-hydroxypyruvate and D-ribose-5-phosphate , 2009 .

[23]  John M Woodley,et al.  Characterization of enzymatic D‐xylulose 5‐phosphate synthesis , 2008, Biotechnology and bioengineering.

[24]  O. Solovjeva,et al.  Enzymatic synthesis of d-xylulose 5-phosphate from hydroxypyruvate and d-glyceraldehyde-3-phosphate , 2008 .

[25]  Steven M. Thompson,et al.  Divergent evolution of function in the ROK sugar kinase superfamily: role of enzyme loops in substrate specificity. , 2007, Biochemistry.

[26]  H. Nishimasu,et al.  Crystal Structures of an ATP-dependent Hexokinase with Broad Substrate Specificity from the Hyperthermophilic Archaeon Sulfolobus tokodaii* , 2007, Journal of Biological Chemistry.

[27]  Claudine Médigue,et al.  Identification of the Last Unknown Genes in the Fermentation Pathway of Lysine* , 2007, Journal of Biological Chemistry.

[28]  James T. Park,et al.  The N-Acetyl-d-Glucosamine Kinase of Escherichia coli and Its Role in Murein Recycling , 2004, Journal of bacteriology.

[29]  R. Raines,et al.  Identifying latent enzyme activities: substrate ambiguity within modern bacterial sugar kinases. , 2004, Biochemistry.

[30]  E. Langley,et al.  Glucose kinase alone cannot be responsible for carbon source regulation in Streptomyces peucetius var. caesius. , 2004, Research in microbiology.

[31]  S. Kawai,et al.  Characterization and Molecular Cloning of a Novel Enzyme, Inorganic Polyphosphate/ATP-Glucomannokinase, of Arthrobacter sp. Strain KM , 2003, Applied and Environmental Microbiology.

[32]  H. Brinkmann,et al.  The Hexokinase of the Hyperthermophile Thermoproteus tenax , 2003, Journal of Biological Chemistry.

[33]  Alex Bateman,et al.  QuickTree: building huge Neighbour-Joining trees of protein sequences , 2002, Bioinform..

[34]  P. Schönheit,et al.  The First Archaeal ATP-Dependent Glucokinase, from the Hyperthermophilic Crenarchaeon Aeropyrum pernix, Represents a Monomeric, Extremely Thermophilic ROK Glucokinase with Broad Hexose Specificity , 2002, Journal of bacteriology.

[35]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[36]  H. Kornberg,et al.  Genetic control of manno(fructo)kinase activity in Escherichia coli , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Plumbridge,et al.  DNA binding sites for the Mlc and NagC proteins: regulation of nagE, encoding the N-acetylglucosamine-specific transporter in Escherichia coli. , 2001, Nucleic acids research.

[38]  G. Sprenger,et al.  Thiamin-dependent enzymes as catalysts in chemoenzymatic syntheses. , 1998, Biochimica et biophysica acta.

[39]  R. Krämer,et al.  Expression of the Escherichia coli pmi gene, encoding phosphomannose-isomerase in Zymomonas mobilis, leads to utilization of mannose as a novel growth substrate, which can be used as a selective marker , 1996, Applied and environmental microbiology.

[40]  M. Saier,et al.  Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria. , 1994, Microbiology.

[41]  Y. Yamamoto,et al.  Isolation, characterization and sequence analysis of the scrK gene encoding fructokinase of Streptococcus mutans. , 1993, Journal of general microbiology.

[42]  K C Holmes,et al.  A new ATP-binding fold in actin, hexokinase and Hsc70. , 1993, Trends in cell biology.

[43]  J. Liu,et al.  Cloning, sequencing, and expression of the Zymomonas mobilis fructokinase gene and structural comparison of the enzyme with other hexose kinases , 1992, Journal of bacteriology.

[44]  J. Thompson,et al.  Sucrose fermentation by Fusobacterium mortiferum ATCC 25557: transport, catabolism, and products , 1992, Journal of bacteriology.

[45]  D. Sackett,et al.  Purification and properties of fructokinase I from Lactococcus lactis. Localization of scrK on the sucrose-nisin transposon Tn5306. , 1991, The Journal of biological chemistry.

[46]  W. Hillen,et al.  Organization, promoter analysis and transcriptional regulation of the Staphylococcus xylosus xylose utilization operon , 1991, Molecular and General Genetics MGG.

[47]  P. Kreuzer,et al.  Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator , 1989, Journal of bacteriology.

[48]  H. Kuramitsu,et al.  Characterization and sequence analysis of the scrA gene encoding enzyme IIScr of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system , 1989, Journal of bacteriology.

[49]  F. Franke,et al.  Synthesis and n.m.r. characterization of intermediates in the l-type pentose phosphate cycle , 1985 .

[50]  R. Scopes,et al.  Simultaneous purification and characterization of glucokinase, fructokinase and glucose-6-phosphate dehydrogenase from Zymomonas mobilis. , 1985, The Biochemical journal.

[51]  R. Lahti,et al.  A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. , 1981, Analytical biochemistry.

[52]  L. Cary,et al.  Carbon-13 nuclear magnetic resonance studies and anomeric composition of ketohexose phosphates in solution. , 1980, Biochemistry.

[53]  H. Fromm,et al.  A study on the kinetics and mechanism of D-lyxose and D-xylose activation of the adenosine triphosphatase activity associated with yeast hexokinase. , 1971, The Journal of biological chemistry.

[54]  Ritesh Kumar,et al.  Discovery of new enzymes and metabolic pathways using structure and genome context , 2016 .

[55]  J. Weissenbach,et al.  Revealing the hidden functional diversity of an enzyme family. , 2014, Nature chemical biology.

[56]  Tetsuya Hayashi,et al.  Escherichia coli , 1983, Case Studies in Infectious Disease.

[57]  G R Jacobson,et al.  Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. , 1993, Microbiological reviews.

[58]  D. Phillips Revealing the Hidden , 1991 .

[59]  H. Bergmeyer,et al.  Adenosine-5′-diphosphate and Adenosine-5′-monophosphate , 1974 .

[60]  H. Lipson Crystal Structures , 1949, Nature.