Imaging interferometric microscopy.

We introduce and demonstrate a new microscopy concept: imaging interferometric microscopy (IIM), which is related to holography, synthetic-aperture imaging, and off-axis-dark-field illumination techniques. IIM is a wavelength-division multiplex approach to image formation that combines multiple images covering different spatial-frequency regions to form a composite image with a resolution much greater than that permitted by the same optical system using conventional techniques. This new type of microscopy involves both off-axis coherent illumination and reinjection of appropriate zero-order reference beams. Images demonstrate high resolution, comparable with that of a high-numerical-aperture (NA) objective, while they retain the long working distance, the large depth of field, and the large field of view of a low-NA objective. A Fourier-optics model of IIM is in good agreement with the experiment.

[1]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[2]  Optical Systems with Enhanced Resolving Power , 1960 .

[3]  W. Lukosz,et al.  Optischen Abbildung Unter Überschreitung der Beugungsbedingten Auflösungsgrenze , 1963 .

[4]  A. W. Lohmann,et al.  Superresolution for Nonbirefringent Objects , 1964 .

[5]  W. Lukosz Optical Systems with Resolving Powers Exceeding the Classical Limit , 1966 .

[6]  B. Roy Frieden,et al.  Probability, Statistical Optics, And Data Testing , 1982 .

[7]  Colin J. R. Sheppard,et al.  Information capacity and resolution in an optical system , 1986 .

[8]  C J Oliver Synthetic-aperture radar imaging , 1989 .

[9]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[10]  E N Leith,et al.  Superresolution by spatial-temporal encoding methods. , 1992, Applied optics.

[11]  Stefan W. Hell,et al.  Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation , 1992 .

[12]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[13]  T. Gaylord,et al.  Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings , 1995 .

[14]  W. Cathey,et al.  Extended depth of field through wave-front coding. , 1995, Applied optics.

[15]  Steven W. Smith,et al.  The Scientist and Engineer's Guide to Digital Signal Processing , 1997 .

[16]  S. Brueck,et al.  Imaging interferometric lithography: approaching the resolution limits of optics. , 1999, Optics letters.

[17]  D Mendlovic,et al.  Superresolving optical system with time multiplexing and computer decoding. , 1999, Applied optics.

[18]  M. Gustafsson,et al.  Extended resolution fluorescence microscopy. , 1999, Current opinion in structural biology.

[19]  Steven R. J. Brueck,et al.  Spatial frequency analysis of optical lithography resolution enhancement techniques , 1999 .

[20]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[21]  Zeev Zalevsky,et al.  IV Optical systems with improved resolving power , 2000 .

[22]  M. Gross,et al.  Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography. , 2001, Optics letters.

[23]  Steven R. J. Brueck,et al.  Imaging interferometric microscopy for enhanced resolution , 2002, SPIE Advanced Lithography.

[24]  Christoph Cremer,et al.  Subwavelength size determination by spatially modulated illumination virtual microscopy. , 2002, Applied optics.

[25]  Stefan W. Hell,et al.  Focal spots of size λ/23 open up far-field florescence microscopy at 33 nm axial resolution , 2003 .

[26]  Zeev Zalevsky,et al.  Optical super resolution , 2003 .

[27]  Zeev Zalevsky,et al.  Single-step superresolution by interferometric imaging. , 2004, Optics express.

[28]  S. Brueck,et al.  Imaging Interferometric Microscopy , 2008, 2005 Pacific Rim Conference on Lasers & Electro-Optics.

[29]  Thanis M. Tridhavee,et al.  Optimal frequency coverages and parsings for imaging interferometric lithography , 2005 .

[30]  Zeev Zalevsky,et al.  Superresolution with nonorthogonal polarization coding. , 2005, Applied optics.

[31]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.