LASER: Large genome ASsembly EvaluatoR

[1]  Lucian Ilie,et al.  E-MEM: efficient computation of maximal exact matches for very large genomes , 2015, Bioinform..

[2]  Roberto Solis-Oba,et al.  SAGE: String-overlap Assembly of GEnomes , 2014, BMC Bioinformatics.

[3]  Francisco Fernandes,et al.  slaMEM: efficient retrieval of maximal exact matches using a sampled LCP array , 2014, Bioinform..

[4]  Michael Roberts,et al.  The MaSuRCA genome assembler , 2013, Bioinform..

[5]  Steven Salzberg,et al.  GAGE-B: an evaluation of genome assemblers for bacterial organisms , 2013, Bioinform..

[6]  Alexey A. Gurevich,et al.  QUAST: quality assessment tool for genome assemblies , 2013, Bioinform..

[7]  Bernard De Baets,et al.  essaMEM: finding maximal exact matches using enhanced sparse suffix arrays , 2013, Bioinform..

[8]  Inanç Birol,et al.  Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species , 2013, GigaScience.

[9]  David W. Cheung,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[10]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[11]  Heng Li,et al.  Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly , 2012, Bioinform..

[12]  R. Durbin,et al.  Efficient de novo assembly of large genomes using compressed data structures. , 2012, Genome research.

[13]  M. Schatz,et al.  Algorithms Gage: a Critical Evaluation of Genome Assemblies and Assembly Material Supplemental , 2008 .

[14]  S. Young,et al.  Plantagora: Modeling Whole Genome Sequencing and Assembly of Plant Genomes , 2011, PloS one.

[15]  Nuno A. Fonseca,et al.  Assemblathon 1: a competitive assessment of de novo short read assembly methods. , 2011, Genome research.

[16]  Enno Ohlebusch,et al.  Computing Matching Statistics and Maximal Exact Matches on Compressed Full-Text Indexes , 2010, SPIRE.

[17]  Huanming Yang,et al.  De novo assembly of human genomes with massively parallel short read sequencing. , 2010, Genome research.

[18]  Mona Singh,et al.  A practical algorithm for finding maximal exact matches in large sequence datasets using sparse suffix arrays , 2009, Bioinform..

[19]  Steven J. M. Jones,et al.  Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .

[20]  C. Nusbaum,et al.  ALLPATHS: de novo assembly of whole-genome shotgun microreads. , 2008, Genome research.

[21]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[22]  Juliane C. Dohm,et al.  SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing. , 2007, Genome research.

[23]  Steven Salzberg,et al.  TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders , 2004, Bioinform..

[24]  Yi Xing,et al.  Negative selection pressure against premature protein truncation is reduced by both alternative splicing and diploidy , 2004, Genome Biology.

[25]  Enno Ohlebusch,et al.  Replacing suffix trees with enhanced suffix arrays , 2004, J. Discrete Algorithms.

[26]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[27]  M. Borodovsky,et al.  GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. , 2001, Nucleic acids research.