Bacterial chromosome segregation

In most bacteria two vital processes of the cell cycle: DNA replication and chromosome segregation overlap temporally. The action of replication machinery in a fixed location in the cell leads to the duplication of oriC regions, their rapid separation to the opposite halves of the cell and the duplicated chromosomes gradually moving to the same locations prior to cell division. Numerous proteins are implicated in co-replicational DNA segregation and they will be characterized in this review. The proteins SeqA, SMC/MukB, MinCDE, MreB/Mbl, RacA, FtsK/SpoIIIE playing different roles in bacterial cells are also involved in chromosome segregation. The chromosomally encoded ParAB homologs of active partitioning proteins of low-copy number plasmids are also players, not always indispensable, in the segregation of bacterial chromosomes.

[1]  E. Harry,et al.  Bacterial cell division: regulating Z‐ring formation , 2001, Molecular microbiology.

[2]  G. Węgrzyn,et al.  Inheritance of the replication complex: a unique or common phenomenon in the control of DNA replication? , 2001, Archives of Microbiology.

[3]  P. Graumann Bacillus subtilis SMC Is Required for Proper Arrangement of the Chromosome and for Efficient Segregation of Replication Termini but Not for Bipolar Movement of Newly Duplicated Origin Regions , 2000, Journal of bacteriology.

[4]  A. Grossman,et al.  Bipolar localization of a chromosome partition protein in Bacillus subtilis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[5]  D. Biek,et al.  A single 43-bp sopC repeat of plasmid mini-F is sufficient to allow assembly of a functional nucleoprotein partition complex. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Gober,et al.  The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus , 2001, Molecular microbiology.

[7]  T. Ogura,et al.  Structure and function of the F plasmid genes essential for partitioning. , 1986, Journal of molecular biology.

[8]  Tania A Baker,et al.  Polymerases and the Replisome: Machines within Machines , 1998, Cell.

[9]  H. Erickson,et al.  Straight and Curved Conformations of FtsZ Are Regulated by GTP Hydrolysis , 2000, Journal of bacteriology.

[10]  B. Funnell Participation of Escherichia coli integration host factor in the P1 plasmid partition system. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. B. Jensen,et al.  The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  G. Węgrzyn,et al.  Composition of the lambda plasmid heritable replication complex. , 2002, The Biochemical journal.

[13]  J. Löwe,et al.  Distribution of the Escherichia coli structural maintenance of chromosomes (SMC)‐like protein MukB in the cell , 2001, Molecular microbiology.

[14]  W. Margolin,et al.  Localization of Cell Division Protein FtsK to theEscherichia coli Septum and Identification of a Potential N-Terminal Targeting Domain , 1998, Journal of bacteriology.

[15]  Moselio Schaechter,et al.  The replicative origin of the E. coli chromosome binds to cell membranes only when hemimethylated , 1988, Cell.

[16]  D. Lane,et al.  The parAB gene products of Pseudomonas putida exhibit partition activity in both P. putida and Escherichia coli , 2002, Molecular microbiology.

[17]  K. Skarstad,et al.  SeqA, the Escherichia coli origin sequestration protein, is also a specific transcription factor , 2001, Molecular microbiology.

[18]  O. Espéli,et al.  A Physical and Functional Interaction between Escherichia coli FtsK and Topoisomerase IV* , 2003, Journal of Biological Chemistry.

[19]  L. Gagnier,et al.  The P1 plasmid partition complex at parS. II. Analysis of ParB protein binding activity and specificity. , 1993, The Journal of biological chemistry.

[20]  J. Gober,et al.  ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. , 2002, Molecular cell.

[21]  S. Austin,et al.  The P1 plasmid-partition system synthesizes two essential proteins from an autoregulated operon. , 1988, Plasmid.

[22]  I. Borovok,et al.  Gene organization in the trxA/B-oriC region of the Streptomyces coelicolor chromosome and comparison with other eubacteria. , 1998, Gene.

[23]  J. Hoch,et al.  Control of the initiation of sporulation in Bacillus subtilis by a phosphorelay. , 1991, Research in microbiology.

[24]  J. Gober,et al.  Cell Cycle–Dependent Polar Localization of Chromosome Partitioning Proteins in Caulobacter crescentus , 1997, Cell.

[25]  S. Austin,et al.  Segregation of the Escherichia coli chromosome terminus , 2003, Molecular microbiology.

[26]  A. Grossman,et al.  The extrusion-capture model for chromosome partitioning in bacteria. , 2001, Genes & development.

[27]  H. Seitz,et al.  Strand‐specific loading of DnaB helicase by DnaA to a substrate mimicking unwound oriC , 2002, Molecular microbiology.

[28]  J. Surtees,et al.  Stoichiometry of P1 Plasmid Partition Complexes* , 2000, The Journal of Biological Chemistry.

[29]  K. Skarstad,et al.  Escherichia coli SeqA protein affects DNA topology and inhibits open complex formation at oriC , 1999, The EMBO journal.

[30]  S. Moriya,et al.  Increasing the Ratio of Soj to Spo0J Promotes Replication Initiation in Bacillus subtilis , 2003, Journal of bacteriology.

[31]  E. Bi,et al.  FtsZ ring structure associated with division in Escherichia coli , 1991, Nature.

[32]  A. Murray,et al.  Chromosome and Low Copy Plasmid Segregation in E. coli: Visual Evidence for Distinct Mechanisms , 1997, Cell.

[33]  P. Yates,et al.  The F plasmid centromere, sopC, is required for full repression of the sopAB operon. , 1999, Journal of molecular biology.

[34]  J. Sawitzke,et al.  A case for sliding SeqA tracts at anchored replication forks during Escherichia coli chromosome replication and segregation , 2000, The EMBO journal.

[35]  H. Yoshikawa,et al.  Genes and their organization in the replication origin region of the bacterial chromosome , 1992, Molecular microbiology.

[36]  S. Tamaki,et al.  Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli , 1987, Journal of bacteriology.

[37]  S. Hiraga,et al.  Sister chromosome cohesion of Escherichia coli , 2001, Molecular microbiology.

[38]  S. Austin,et al.  The P1 plasmid in action: time-lapse photomicroscopy reveals some unexpected aspects of plasmid partition. , 2002, Plasmid.

[39]  C. Dingman Bidirectional chromosome replication: some topological considerations. , 1974, Journal of theoretical biology.

[40]  J. Soppa,et al.  Cell cycle‐dependent expression of an essential SMC‐like protein and dynamic chromosome localization in the archaeon Halobacterium salinarum , 2002, Molecular microbiology.

[41]  J. Errington,et al.  Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. , 1998, Genes & development.

[42]  A. Leonard,et al.  Building a bacterial orisome: emergence of new regulatory features for replication origin unwinding , 2004, Molecular microbiology.

[43]  W. Donachie,et al.  The cytoplasmic domain of FtsK protein is required for resolution of chromosome dimers , 1999, Molecular microbiology.

[44]  K. Chater,et al.  The ParB protein of Streptomyces coelicolor A3(2) recognizes a cluster of parS sequences within the origin‐proximal region of the linear chromosome , 2002, Molecular microbiology.

[45]  M. Davis,et al.  Recognition of the P1 plasmid centromere analog involves binding of the ParB protein and is modified by a specific host factor. , 1988, The EMBO journal.

[46]  Peter Roepstorff,et al.  Bacterial mitosis: ParM of plasmid R1 moves plasmid DNA by an actin-like insertional polymerization mechanism. , 2003, Molecular cell.

[47]  S. Austin,et al.  The P1 plasmid is segregated to daughter cells by a ‘capture and ejection’ mechanism coordinated with Escherichia coli cell division , 2002, Molecular microbiology.

[48]  Christopher M Thomas,et al.  Effect of growth rate and incC mutation on symmetric plasmid distribution by the IncP‐1 partitioning apparatus , 1999, Molecular microbiology.

[49]  W. Messer The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. , 2002, FEMS microbiology reviews.

[50]  N. Ravin,et al.  Mapping of functional domains in F plasmid partition proteins reveals a bipartite SopB-recognition domain in SopA. , 2003, Journal of molecular biology.

[51]  P. Silver,et al.  Use of time‐lapse microscopy to visualize rapid movement of the replication origin region of the chromosome during the cell cycle in Bacillus subtilis , 1998, Molecular microbiology.

[52]  B. Funnell,et al.  Intracellular localization of P1 ParB protein depends on ParA and parS. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[53]  J. Gober,et al.  Productive interaction between the chromosome partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crescentus , 2003, Molecular microbiology.

[54]  P. Graumann,et al.  Actin-like Proteins MreB and Mbl from Bacillus subtilis Are Required for Bipolar Positioning of Replication Origins , 2003, Current Biology.

[55]  A. Grossman,et al.  Movement of replicating DNA through a stationary replisome. , 2000, Molecular cell.

[56]  Y. Kasahara,et al.  Two separate DNA sequences within oriC participate in accurate chromosome segregation in Bacillus subtilis , 2002, Molecular microbiology.

[57]  J. Beckwith,et al.  Assembly of cell division proteins at the E. coli cell center. , 2002, Current opinion in microbiology.

[58]  R. B. Jensen,et al.  Partitioning of plasmid R1. The ParM protein exhibits ATPase activity and interacts with the centromere-like ParR-parC complex. , 1997, Journal of molecular biology.

[59]  D. Sherratt,et al.  FtsK Is a DNA Motor Protein that Activates Chromosome Dimer Resolution by Switching the Catalytic State of the XerC and XerD Recombinases , 2002, Cell.

[60]  Christopher M Thomas,et al.  IncC of Broad-Host-Range Plasmid RK2 Modulates KorB Transcriptional Repressor Activity In Vivo and Operator Binding In Vitro , 1999, Journal of bacteriology.

[61]  A. Grossman,et al.  Cell cycle and sporulation in Bacillus subtilis. , 1998, Current opinion in microbiology.

[62]  K. Chater,et al.  Partitioning of the Linear Chromosome during Sporulation of Streptomyces coelicolor A3(2) Involves an oriC-Linked parAB Locus , 2000, Journal of bacteriology.

[63]  A. Grossman,et al.  Localization of bacterial DNA polymerase: evidence for a factory model of replication. , 1998, Science.

[64]  H. Niki,et al.  Bidirectional migration of SeqA‐bound hemimethylated DNA clusters and pairing of oriC copies in Escherichia coli , 2000, Genes to cells : devoted to molecular & cellular mechanisms.

[65]  K. Pogliano,et al.  The Membrane Domain of SpoIIIE Is Required for Membrane Fusion during Bacillus subtilis Sporulation , 2003, Journal of bacteriology.

[66]  T. Ogura,et al.  E.coli MukB protein involved in chromosome partition forms a homodimer with a rod‐and‐hinge structure having DNA binding and ATP/GTP binding activities. , 1992, The EMBO journal.

[67]  T. Kruse,et al.  Dysfunctional MreB inhibits chromosome segregation in Escherichia coli , 2003, The EMBO journal.

[68]  R. Lewis,et al.  Chromosome loss from par mutants of Pseudomonas putida depends on growth medium and phase of growth. , 2002, Microbiology.

[69]  J. Reeve,et al.  Minicells of Bacillus subtilis , 1973, Journal of bacteriology.

[70]  W. Margolin,et al.  Themes and variations in prokaryotic cell division. , 2000, FEMS microbiology reviews.

[71]  A. Węgrzyn,et al.  SeqA‐mediated stimulation of a promoter activity by facilitating functions of a transcription activator , 2003, Molecular microbiology.

[72]  Tohru Mizushima,et al.  Acidic phospholipids inhibit the DNA‐binding activity of DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli , 2002, Molecular microbiology.

[73]  A. Grossman,et al.  Identification and Characterization of a Bacterial Chromosome Partitioning Site , 1998, Cell.

[74]  Christopher M Thomas,et al.  Functional dissection of the ParB homologue (KorB) from IncP-1 plasmid RK2. , 2002, Nucleic acids research.

[75]  H. Niki,et al.  Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Y. Brun,et al.  Cell cycle and positional constraints on FtsZ localization and the initiation of cell division in Caulobacter crescentus , 2001, Molecular microbiology.

[77]  A. Grossman,et al.  spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis , 1994, Journal of bacteriology.

[78]  J. Errington,et al.  Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division. , 1994, Science.

[79]  D. Sherratt,et al.  Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. , 1991, The New biologist.

[80]  J. Errington,et al.  Characterization of the parB-Like yyaA Gene of Bacillus subtilis , 2002, Journal of bacteriology.

[81]  J. Bouet,et al.  P1 ParA interacts with the P1 partition complex at parS and an ATP–ADP switch controls ParA activities , 1999, The EMBO journal.

[82]  J. Sawitzke,et al.  An analysis of the factory model for chromosome replication and segregation in bacteria , 2001, Molecular microbiology.

[83]  D. Koshland,et al.  SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family , 1993, The Journal of cell biology.

[84]  J. Gober,et al.  Regulation of cellular differentiation in Caulobacter crescentus , 1995, Microbiological reviews.

[85]  T. Hirano Chromosome cohesion, condensation, and separation. , 2000, Annual review of biochemistry.

[86]  J. Swedlow,et al.  The SMC family: from chromosome condensation to dosage compensation. , 1995, Current opinion in cell biology.

[87]  R. Jessberger,et al.  Structural maintenance of chromosomes (SMC) proteins: conserved molecular properties for multiple biological functions. , 1999, European journal of biochemistry.

[88]  H. Kowarzyk Structure and Function. , 1910, Nature.

[89]  A. Grossman,et al.  Control of Sporulation Gene Expression in Bacillus subtilis by the Chromosome Partitioning Proteins Soj (ParA) and Spo0J (ParB) , 2000, Journal of bacteriology.

[90]  D. Bastia,et al.  Termination of DNA replication in vitro: requirement for stereospecific interaction between two dimers of the replication terminator protein of Bacillus subtilis and with the terminator site to elicit polar contrahelicase and fork impedance. , 1995, The EMBO journal.

[91]  Yu-Ling Shih,et al.  Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[92]  SISTER CHROMATID EXCHANGE FREQUENCIES IN LYMPHOCYTES , 1984, The Lancet.

[93]  F. Neidhardt,et al.  Escherichia Coli and Salmonella: Typhimurium Cellular and Molecular Biology , 1987 .

[94]  Stuart Austin,et al.  The segregation of the Escherichia coli origin and terminus of replication , 2002, Molecular microbiology.

[95]  W. Donachie,et al.  Coupling the initiation of chromosome replication to cell size in Escherichia coli. , 2003, Current opinion in microbiology.

[96]  A. Grossman,et al.  Interactions among mutations that cause altered timing of gene expression during sporulation in Bacillus subtilis , 1992, Journal of bacteriology.

[97]  Z. Kelman,et al.  DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine. , 1995, Annual review of biochemistry.

[98]  Jan Löwe,et al.  F‐actin‐like filaments formed by plasmid segregation protein ParM , 2002, The EMBO journal.

[99]  W. D. Fisher,et al.  MINIATURE escherichia coli CELLS DEFICIENT IN DNA. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[100]  K. Skarstad,et al.  The Escherichia coli SeqA protein binds specifically and co‐operatively to two sites in hemimethylated and fully methylated oriC , 2000, Molecular microbiology.

[101]  H. Mori,et al.  Partitioning of the F plasmid: Overproduction of an essential protein for partition inhibits plasmid maintenance , 1987, Molecular and General Genetics MGG.

[102]  H. Niki,et al.  Subcellular Distribution of Actively Partitioning F Plasmid during the Cell Division Cycle in E. coli , 1997, Cell.

[103]  A. Grossman,et al.  Characterization of a prokaryotic SMC protein involved in chromosome partitioning. , 1998, Genes & development.

[104]  R. B. Jensen,et al.  Plasmid and chromosome partitioning: surprises from phylogeny , 2000, Molecular microbiology.

[105]  Kojima Structure and function , 2005 .

[106]  D. Lane,et al.  Disruption of the F plasmid partition complex in vivo by partition protein SopA , 2000, Molecular microbiology.

[107]  L. Rothfield,et al.  A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli , 1989, Cell.

[108]  H. Niki,et al.  New topoisomerase essential for chromosome segregation in E. coli , 1990, Cell.

[109]  B. Funnell,et al.  The P1 plasmid partition protein ParA. A role for ATP in site-specific DNA binding. , 1994, The Journal of biological chemistry.

[110]  D. Sherratt,et al.  Spatial and temporal organization of replicating Escherichia coli chromosomes , 2003, Molecular microbiology.

[111]  H. Erickson,et al.  The Symmetrical Structure of Structural Maintenance of Chromosomes (SMC) and MukB Proteins: Long, Antiparallel Coiled Coils, Folded at a Flexible Hinge , 1998, The Journal of cell biology.

[112]  Christopher M Thomas,et al.  A family of ATPases involved in active partitioning of diverse bacterial plasmids , 1990, Molecular microbiology.

[113]  T. Katayama,et al.  Replication cycle‐coordinated change of the adenine nucleotide‐bound forms of DnaA protein in Escherichia coli , 1999, The EMBO journal.

[114]  K. A. Martin,et al.  Specificity switching of the P1 plasmid centromere‐like site. , 1990, The EMBO journal.

[115]  C. Woldringh,et al.  The Escherichia cohi minB mutation resembles gyrB in defective nucleoid segregation and decreased negative supercoiling of plasmids , 1990, Molecular and General Genetics MGG.

[116]  T. Katayama,et al.  A Nucleotide Switch in the Escherichia coli DnaA Protein Initiates Chromosomal Replication , 2002, The Journal of Biological Chemistry.

[117]  D. Oesterhelt,et al.  Discovery of two novel families of proteins that are proposed to interact with prokaryotic SMC proteins, and characterization of the Bacillus subtilis family members ScpA and ScpB , 2002, Molecular microbiology.

[118]  M. Davis,et al.  Biochemical activities of the ParA partition protein of the P1 plasmid , 1992, Molecular microbiology.

[119]  J. Errington,et al.  The Bacillus subtilis soj‐spo0J locus is required for a centromere‐like function involved in prespore chromosome partitioning , 1996, Molecular microbiology.

[120]  Christopher M Thomas,et al.  Active partitioning of bacterial plasmids. , 1992, Journal of general microbiology.

[121]  P. Graumann SMC proteins in bacteria: condensation motors for chromosome segregation? , 2001, Biochimie.

[122]  A. Kolstø Time for a fresh look at the bacterial chromosome. , 1999, Trends in microbiology.

[123]  O. Espéli,et al.  Temporal regulation of topoisomerase IV activity in E. coli. , 2003, Molecular cell.

[124]  K. Pogliano,et al.  MinCD‐dependent regulation of the polarity of SpoIIIE assembly and DNA transfer , 2002, The EMBO journal.

[125]  M. Yarmolinsky,et al.  Plasmid partitioning and the spreading of P1 partition protein ParB , 2004, Molecular microbiology.

[126]  D. Hilbert,et al.  Sporulation of Bacillus subtilis. , 2004, Current opinion in microbiology.

[127]  D. Sherratt,et al.  FtsK‐dependent and ‐independent pathways of Xer site‐specific recombination , 1999, The EMBO journal.

[128]  J. Hoch Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. , 1993, Annual review of microbiology.

[129]  H. Niki,et al.  Complex formation of MukB, MukE and MukF proteins involved in chromosome partitioning in Escherichia coli , 1999, The EMBO journal.

[130]  J. Errington,et al.  The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division , 1997, Molecular microbiology.

[131]  K. Morikawa,et al.  Structure of a replication-terminator protein complexed with DNA , 1996, Nature.

[132]  M. Yarmolinsky,et al.  Effects of the P1 Plasmid Centromere on Expression of P1 Partition Genes , 2002, Journal of bacteriology.

[133]  A. Grossman,et al.  Effects of the Chromosome Partitioning Protein Spo0J (ParB) on oriC Positioning and Replication Initiation in Bacillus subtilis , 2003, Journal of bacteriology.

[134]  K. Skarstad,et al.  E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration , 1995, Cell.

[135]  Nancy Kleckner,et al.  SeqA: A negative modulator of replication initiation in E. coli , 1994, Cell.

[136]  M. Yarmolinsky,et al.  Silencing of genes flanking the P1 plasmid centromere. , 1999, Science.

[137]  W. Donachie Co‐ordinate regulation of the Escherichia coli cell cycle or The cloud of unknowing , 2001, Molecular microbiology.

[138]  A. Leonard,et al.  Two discriminatory binding sites in the Escherichia coli replication origin are required for DNA strand opening by initiator DnaA-ATP. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[139]  O. Espéli,et al.  SetB: an integral membrane protein that affects chromosome segregation in Escherichia coli , 2003, Molecular microbiology.

[140]  D. Biek,et al.  Partition functions of mini-F affect plasmid DNA topology in Escherichia coli. , 1995, Journal of molecular biology.

[141]  J. Errington,et al.  Direct evidence for active segregation of oriC regions of the Bacillus subtilis chromosome and co‐localization with the Spo0J partitioning protein , 1997, Molecular microbiology.

[142]  J. Errington,et al.  Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. , 1997, Genes & development.

[143]  J. Wang,et al.  Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. , 2000, Science.

[144]  R. B. Jensen,et al.  Prokaryotic DNA segregation by an actin‐like filament , 2002, The EMBO journal.

[145]  David J Sherratt,et al.  Bacterial Chromosome Dynamics , 2003, Science.

[146]  T. Ogura,et al.  The new gene mukB codes for a 177 kd protein with coiled‐coil domains involved in chromosome partitioning of E. coli. , 1991, The EMBO journal.

[147]  P. Kuempel,et al.  Sister Chromatid Exchange Frequencies inEscherichia coli Analyzed by Recombination at thedif Resolvase Site , 1998, Journal of bacteriology.

[148]  J. Sawitzke,et al.  Suppression of chromosome segregation defects of Escherichia coli muk mutants by mutations in topoisomerase I. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[149]  F. Khanim,et al.  Repression at a distance by the global regulator KorB of promiscuous IncP plasmids , 1999, Molecular microbiology.

[150]  J. Errington,et al.  Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. , 1999, Molecular cell.

[151]  J. Errington,et al.  RacA and the Soj‐Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis , 2003, Molecular microbiology.

[152]  D. Sherratt,et al.  Circles: The replication-recombination-chromosome segregation connection , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[153]  J. Lutkenhaus,et al.  Dynamic proteins in bacteria. , 2002, Current opinion in microbiology.

[154]  Jonathan Bath,et al.  DNA transport in bacteria , 2001, Nature Reviews Molecular Cell Biology.

[155]  K. Gerdes,et al.  Bacterial mitosis: partitioning protein ParA oscillates in spiral‐shaped structures and positions plasmids at mid‐cell , 2004, Molecular microbiology.

[156]  D. O’Callaghan,et al.  Differences in chromosome number and genome rearrangements in the genus Brucella , 1998, Molecular microbiology.

[157]  P Bork,et al.  An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[158]  R. Losick,et al.  RacA, a Bacterial Protein That Anchors Chromosomes to the Cell Poles , 2002, Science.

[159]  C. Sáez,et al.  Recruitment of MinC, an Inhibitor of Z-Ring Formation, to the Membrane in Escherichia coli: Role of MinD and MinE , 2003, Journal of bacteriology.

[160]  A. Grossman,et al.  A developmental checkpoint couples the initiation of sporulation to DNA replication in Bacillus subtilis. , 1994, The EMBO journal.

[161]  《中华放射肿瘤学杂志》编辑部 Medline , 2001, Current Biology.

[162]  K. Asai,et al.  A Bacillus subtilis gene‐encoding protein homologous to eukaryotic SMC motor protein is necessary for chromosome partition , 1998, Molecular microbiology.

[163]  N. Cozzarelli,et al.  Closing the ring: links between SMC proteins and chromosome partitioning, condensation, and supercoiling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[164]  K. Skarstad,et al.  Limiting DNA replication to once and only once , 2000, EMBO reports.

[165]  J. Wang,et al.  SopB protein-mediated silencing of genes linked to the sopC locus of Escherichia coli F plasmid. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[166]  T. Ogura,et al.  Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells , 1989, Journal of bacteriology.

[167]  Christopher M Thomas,et al.  ParB of Pseudomonas aeruginosa: Interactions with Its Partner ParA and Its Target parS and Specific Effects on Bacterial Growth , 2004, Journal of bacteriology.

[168]  J. Pogliano,et al.  Compatible bacterial plasmids are targeted to independent cellular locations in Escherichia coli , 2002, The EMBO journal.

[169]  S Kaplan,et al.  Chromosome transfer in Rhodobacter sphaeroides: Hfr formation and genetic evidence for two unique circular chromosomes , 1992, Journal of bacteriology.

[170]  H V Westerhoff,et al.  Structure and partitioning of bacterial DNA: determined by a balance of compaction and expansion forces? , 1995, FEMS microbiology letters.

[171]  R. Wake Replication fork arrest and termination of chromosome replication in Bacillus subtilis. , 1997, FEMS microbiology letters.

[172]  S. Molin,et al.  Partitioning of plasmid R1. Structural and functional analysis of the parA locus. , 1986, Journal of molecular biology.

[173]  J. Errington,et al.  Control of Cell Shape in Bacteria Helical, Actin-like Filaments in Bacillus subtilis , 2001, Cell.