Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures

Optimization of the interaction distance between qubits to map a quantum circuit into one-dimensional quantum architectures is addressed. The problem is formulated as the Minimum Linear Arrangement (MinLA) problem. To achieve this, an interaction graph is constructed for a given circuit, and multiple instances of the MinLA problem for selected subcircuits of the initial circuit are formulated and solved. In addition, a lookahead technique is applied to improve the cost of the proposed solution which examines different subcircuit candidates. Experiments on quantum circuits for quantum Fourier transform and reversible benchmarks show the effectiveness of the approach.

[1]  D. Maslov,et al.  Linear depth stabilizer and quantum Fourier transformation circuits with no auxiliary qubits in finite-neighbor quantum architectures , 2007 .

[2]  V.V. Shende,et al.  Synthesis of quantum-logic circuits , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[3]  Robert Wille,et al.  RevLib: An Online Resource for Reversible Functions and Reversible Circuits , 2008, 38th International Symposium on Multiple Valued Logic (ismvl 2008).

[4]  Robert Wille,et al.  Synthesis of quantum circuits for linear nearest neighbor architectures , 2011, Quantum Inf. Process..

[5]  Morteza Saheb Zamani,et al.  Reversible circuit synthesis using a cycle-based approach , 2010, JETC.

[6]  R. Laflamme,et al.  Using error correction to determine the noise model , 2007 .

[7]  M. Mottonen,et al.  Decompositions of general quantum gates , 2006 .

[8]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[9]  Morteza Saheb Zamani,et al.  Depth-optimized reversible circuit synthesis , 2012, Quantum Inf. Process..

[10]  Samuel Kutin,et al.  Computation at a Distance , 2007, Chic. J. Theor. Comput. Sci..

[11]  Jordi Petit,et al.  Experiments on the minimum linear arrangement problem , 2003, ACM J. Exp. Algorithmics.

[12]  Rodney Van Meter,et al.  On the Effect of Quantum Interaction Distance on Quantum Addition Circuits , 2008, JETC.

[13]  Morteza Saheb Zamani,et al.  Block-based quantum-logic synthesis , 2010, Quantum Inf. Comput..

[14]  Simone Severini,et al.  Translation Techniques Between Quantum Circuit Architectures , 2007 .

[15]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[16]  Mark Oskin,et al.  Architectural implications of quantum computing technologies , 2006, ACM J. Emerg. Technol. Comput. Syst..

[17]  Simon J. Devitt,et al.  Implementation of Shor's algorithm on a linear nearest neighbour qubit array , 2004, Quantum Inf. Comput..

[18]  Igor L. Markov,et al.  Synthesis and optimization of reversible circuits—a survey , 2011, CSUR.

[19]  A. Fowler,et al.  Quantum-error correction on linear-nearest-neighbor qubit arrays , 2003, quant-ph/0311116.

[20]  Krysta Marie Svore,et al.  A 2D nearest-neighbor quantum architecture for factoring in polylogarithmic depth , 2012, Quantum Inf. Comput..

[21]  Lev B. Ioffe,et al.  Discrete non-Abelian gauge theories in Josephson-junction arrays and quantum computation , 2004 .

[22]  Dmitri Maslov,et al.  Quantum Circuit Placement , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[23]  Gerhard Reinelt,et al.  Exact solution of the 2-dimensional grid arrangement problem , 2012, Discret. Optim..

[24]  Samuel A. Kutin Shor's algorithm on a nearest-neighbor machine , 2006 .

[25]  Paola Cappellaro,et al.  Single spin measurement using cellular automata techniques. , 2006, Physical review letters.

[26]  Masaki Nakanishi,et al.  An efficient conversion of quantum circuits to a linear nearest neighbor architecture , 2011, Quantum Inf. Comput..

[27]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[28]  Yasuhiro Takahashi,et al.  The quantum fourier transform on a linear nearest neighbor architecture , 2007, Quantum Inf. Comput..