Global Optimization Approaches for Optimal Trajectory Planning

Optimal trajectory design for interplanetary space missions is an extremely hard problem, mostly because of the very large number of local minimizers that real problems present. Despite the challenges of the task, it is possible, in the preliminary phase, to design low-cost high-energy trajectories with little or no human supervision. In many cases, the discovered paths are as cheap, or even cheaper, as the ones found by experts through lengthy and difficult processes. More interestingly, many of the tricks that experts used to design the trajectories, like, e.g., traveling along an orbit in fractional resonance with a given planet, naturally emerge from the computed solutions, despite neither the model nor the solver have been explicitly designed in order to exploit such knowledge. In this chapter we will analyze the modelling techniques that computational experiments have shown to be most successful, along with some of the algorithms that might be used to solve such problems.

[1]  Andrea Grosso,et al.  Solving the problem of packing equal and unequal circles in a circular container , 2010, J. Glob. Optim..

[2]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[3]  John Mark Bishop,et al.  Advanced global optimisation for mission analysis and design , 2004 .

[4]  Gregory J. Whiffen An investigation of a Jupiter Galilean Moon Orbiter trajectory , 2003 .

[5]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[6]  Bernardetta Addis,et al.  Disk Packing in a Square: A New Global Optimization Approach , 2008, INFORMS J. Comput..

[7]  Massimiliano Vasile,et al.  On the Preliminary Design of Multiple Gravity-Assist Trajectories , 2011, ArXiv.

[8]  M. Lavagna,et al.  Gravity assist space pruning based on differential algebra , 2009 .

[9]  T. Teichmann,et al.  Fundamentals of celestial mechanics , 1963 .

[10]  Matthew A. Vavrina,et al.  Global Low-Thrust Trajectory Optimization through Hybridization of a Genetic Algorithm and a Direct Method , 2008 .

[11]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[12]  Dario Izzo,et al.  Spacecraft Trajectory Optimization: Global Optimization and Space Pruning for Spacecraft Trajectory Design , 2010 .

[13]  James M. Longuski,et al.  Preliminary Design of Nuclear Electric Propulsion Missions to the Outer Planets , 2004 .

[14]  Dario Izzo,et al.  Lambert's Problem for Exponential Sinusoids , 2006 .

[15]  R. Jehn,et al.  Interplanetary navigation along the low-thrust trajectory of BepiColombo , 2006 .

[16]  Slawomir J. Nasuto,et al.  Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories , 2007, J. Glob. Optim..

[17]  G. Radice,et al.  Advanced Global Optimisation Tools for Mission Analysis and Design , 2004 .

[18]  Marco Locatelli,et al.  On the Multilevel Structure of Global Optimization Problems , 2005, Comput. Optim. Appl..

[19]  Mariella Graziano,et al.  Autonomous Low‐Thrust Guidance: Application to SMART‐1 and BepiColombo , 2004, Annals of the New York Academy of Sciences.

[20]  Jon A. Sims,et al.  Preliminary Design of Low-Thrust Interplanetary Missions , 1997 .

[21]  Bernardetta Addis,et al.  A global optimization method for the design of space trajectories , 2011, Comput. Optim. Appl..

[22]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[23]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[24]  Dario Izzo,et al.  Global Optimization of Low-Thrust Trajectories via Impulsive Delta-V Transcription , 2009 .

[25]  Massimiliano Vasile,et al.  A hybrid multiagent approach for global trajectory optimization , 2009, J. Glob. Optim..

[26]  Robert H. Leary,et al.  Global Optimization on Funneling Landscapes , 2000, J. Glob. Optim..

[27]  Daniel W. Parcher,et al.  Gravity-assist trajectories to Jupiter using nuclear electric propulsion , 2005 .

[28]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[29]  Massimiliano Vasile,et al.  An Inflationary Differential Evolution Algorithm for Space Trajectory Optimization , 2011, IEEE Transactions on Evolutionary Computation.