Star formation in the nearby universe: The ultraviolet and infrared points of view

This work presents the main ultraviolet (UV) and far-infrared (FIR) properties of two samples of nearby galaxies selected from the GALEX (λ = 2315 A, hereafter NUV) and IRAS (λ = 60 μm) surveys, respectively. They are built in order to obtain detection at both wavelengths for most of the galaxies. Star formation rate (SFR) estimators based on the UV and FIR emissions are compared. Systematic differences are found between the SFR estimators for individual galaxies based on the NUV fluxes corrected for dust attenuation and on the total IR luminosity. A combined estimator based on NUV and IR luminosities seems to be the best proxy over the whole range of values of SFR. Although both samples present similar average values of the birthrate parameter b, their star-formation-related properties are substantially different: NUV-selected galaxies tend to show larger values of b for lower masses, SFRs, and dust attenuation, supporting previous scenarios of star formation history (SFH). Conversely, about 20% of the FIR-selected galaxies show high values of b, SFR, and NUV attenuation. These galaxies, most of them being LIRGs and ULIRGs, break down the downsizing picture of SFH; however, their relative contribution per unit volume is small in the local universe. Finally, the cosmic SFR density of the local universe is estimated in a consistent way from the NUV and IR luminosities.

[1]  O. Fèvre,et al.  The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.

[2]  A. Szalay,et al.  The Properties of Ultraviolet-luminous Galaxies at the Current Epoch , 2004, astro-ph/0412577.

[3]  Hans Ulrik Nørgaard-Nielsen,et al.  Observations of the Hubble Deep Field with the Infrared Space Observatory V. Spectral energy distributions starburst models and star formation history , 1997 .

[4]  T. Takeuchi,et al.  The Luminosity Function of IRAS Point Source Catalog Redshift Survey Galaxies , 2003 .

[5]  T. Takeuchi,et al.  Tests of Statistical Methods for Estimating Galaxy Luminosity Function and Applications to the Hubble Deep Field , 2000, astro-ph/0003127.

[6]  The Dust in Lyman Break Galaxies , 2003, astro-ph/0301121.

[7]  M. Skrutskie,et al.  2MASS Extended Source Catalog: Overview and Algorithms , 2000, astro-ph/0004318.

[8]  Collision-induced galaxy formation: semi-analytical model and multiwavelength predictions , 2002, astro-ph/0210030.

[9]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[10]  K. Gordon,et al.  Multiple Scattering in Clumpy Media. II. Galactic Environments , 1999, astro-ph/9907342.

[11]  M. Sauvage,et al.  On the Use of Far-Infrared Luminosity as a Star Formation Indicator in Galaxies , 1992 .

[12]  D. Garnett,et al.  Composition gradient across M81 , 1987 .

[13]  D. Calzetti,et al.  Dust in Starburst Galaxies , 1997, astro-ph/9705043.

[14]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[15]  Oswald H. W. Siegmund,et al.  THE STAR FORMATION RATE FUNCTION OF THE LOCAL UNIVERSE , 2005 .

[16]  A. C. Phillips,et al.  A Multiwavelength Approach to the Star Formation Rate Estimation in Galaxies at Intermediate Redshifts , 2002, astro-ph/0210344.

[17]  P. Peebles Principles of Physical Cosmology , 1993 .

[18]  The evolution of the ultraviolet and infrared luminosity densities in the universe at 0 , 2005, astro-ph/0508124.

[19]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[20]  J. Brinchmann,et al.  The Mass Assembly and Star Formation Characteristics of Field Galaxies of Known Morphology , 2000, The Astrophysical journal.

[21]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[22]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[23]  Spain.,et al.  Star formation and dust attenuation properties in galaxies from a statistical ultraviolet‐to‐far‐infrared analysis , 2005, astro-ph/0504434.

[24]  J. Dunlop,et al.  The star-formation history of the Universe from the stellar populations of nearby galaxies , 2004, Nature.

[25]  K. Gordon,et al.  The Flux Ratio Method for Determining the Dust Attenuation of Starburst Galaxies , 1999, astro-ph/9912034.

[26]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[27]  Dust and nebular emission. I. Models for normal galaxies , 2003, astro-ph/0307096.

[28]  A. Szalay,et al.  The On-Orbit Performance of the Galaxy Evolution Explorer , 2004, astro-ph/0411310.

[29]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[30]  Star formation rate in galaxies from UV, IR, and Hα estimators , 2003, astro-ph/0308531.

[31]  Will Saunders,et al.  The PSCz catalogue , 1999, astro-ph/9909191.

[32]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[33]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[34]  G. Gavazzi,et al.  1.65 MICRON (H BAND) SURFACE PHOTOMETRY OF GALAXIES. VI. THE HISTORY OF STAR FORMATION IN NORMAL LATE-TYPE GALAXIES , 2000, astro-ph/0011016.

[35]  S. M. Fall,et al.  Star formation history and dust content of galaxies drawn from ultraviolet surveys , 2003, astro-ph/0312474.

[36]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[37]  Cambridge,et al.  A Comparison of Independent Star Formation Diagnostics for an Ultraviolet-selected Sample of Nearby Galaxies , 2001, astro-ph/0104425.

[38]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[39]  G. Helou,et al.  ON THE ORIGIN OF THE 40-120 MICRON EMISSION OF GALAXY DISKS: A COMPARISON WITH H-ALPHA FLUXES , 1987 .

[40]  U. Arizona,et al.  A Bias in Optical Observations of High-Redshift Luminous Infrared Galaxies , 2003, astro-ph/0311632.

[41]  T. Heckman,et al.  Internal Absorption and the Luminosity of Disk Galaxies , 1996 .

[42]  D. Zaritsky The relationships among mass, metallicity, and morphology for spiral galaxies , 1993 .

[43]  New constraints on the star formation histories and dust attenuation of galaxies in the local universe from GALEX , 2004, astro-ph/0411354.

[44]  O. Fèvre,et al.  15 Micron Infrared Space Observatory Observations of the 1415+52 Canada-France Redshift Survey Field: The Cosmic Star Formation Rate as Derived from Deep Ultraviolet, Optical, Mid-Infrared, and Radio Photometry , 1999 .

[45]  Dust Attenuation in the Nearby Universe: A Comparison between Galaxies Selected in the Ultraviolet and in the Far-Infrared , 2004, astro-ph/0411343.

[46]  M. M. Moshir,et al.  IRAS Faint Source Catalogue, version 2.0. , 1990 .

[47]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2000, astro-ph/0011014.

[48]  THE ASTROPHYSICAL JOURNAL: ACCEPTED ON DECEMBER 5TH, 2002 Preprint typeset using L ATEX style emulateapj v. 26/01/00 ESTIMATING STAR FORMATION RATES FROM INFRARED AND RADIO LUMINOSITIES: THE ORIGIN OF THE RADIO–INFRARED CORRELATION , 2002 .

[49]  A. Boselli,et al.  UV and FIR selected samples of galaxies in the local Universe. Dust extinction and star formation rates , 2004, astro-ph/0402259.

[50]  T. Budavari,et al.  The GALEX-VVDS Measurement of the Evolution of the Far-Ultraviolet Luminosity Density and the Cosmic Star Formation Rate , 2004, astro-ph/0411424.

[51]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[52]  D. Lynden-Bell,et al.  A Method of Allowing for Known Observational Selection in Small Samples Applied to 3CR Quasars , 1971 .