Comparison of gold and silver dispersion laws suitable for FDTD simulations

We show that it is possible to increase the accuracy of gold and silver permittivity description by using the Drude–critical points model rather than the widely used Drude–Lorentz model. We also show the effect of this improvement on the extinction efficiency and near-field intensity precision.

[1]  P. Etchegoin,et al.  An analytic model for the optical properties of gold. , 2006, The Journal of chemical physics.

[2]  Jeffrey L. Young,et al.  A summary and systematic analysis of FDTD algorithms for linearly dispersive media , 2001 .

[3]  Thierry Laroche,et al.  Crystalline structure's influence on the near-field optical properties of single plasmonic nanowires , 2007 .

[4]  Rostislav Bukasov,et al.  Highly tunable infrared extinction properties of gold nanocrescents. , 2007, Nano letters.

[5]  Marc Lamy de la Chapelle,et al.  Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method , 2005 .

[6]  R. Luebbers,et al.  The Finite Difference Time Domain Method for Electromagnetics , 1993 .

[7]  W Fichtner,et al.  Auxiliary differential equation: efficient implementation in the finite-difference time-domain method. , 1997, Optics letters.

[8]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[9]  Harry A. Atwater,et al.  Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model , 2005 .

[10]  Peter Nordlander,et al.  Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles , 2007 .

[11]  Fei Le,et al.  Nanorice: a hybrid plasmonic nanostructure. , 2006, Nano letters.

[12]  F. Payne,et al.  An FDTD method for the simulation of dispersive metallic structures , 2007 .

[13]  A. Vial,et al.  Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method , 2007 .

[14]  M. Beard,et al.  Using the finite-difference time-domain pulse propagation method to simulate time-resolved THz experiments , 2001 .

[15]  Tae-Woo Lee,et al.  Subwavelength light bending by metal slit structures. , 2005, Optics express.

[16]  Philippe Guyot-Sionnest,et al.  Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations , 2007 .

[17]  Pablo G. Etchegoin,et al.  Erratum: “An analytic model for the optical properties of gold” [J. Chem. Phys. 125, 164705 (2006)] , 2007 .

[18]  Dale M Byrne,et al.  Finite-difference time-domain analysis of frequency-selective surfaces in the mid-infrared. , 2006, Applied optics.

[19]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[20]  P. Guyot-Sionnest,et al.  Optical properties of rod-like and bipyramidal gold nanoparticles. , 2007 .

[21]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[22]  U. Chettiar,et al.  The Ag dielectric function in plasmonic metamaterials. , 2008, Optics express.

[23]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[24]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[25]  A. Vial Implementation of the critical points model in the recursive convolution method for modelling dispersive media with the finite-difference time domain method , 2007 .

[26]  Luis Martín-Moreno,et al.  Influence of material properties on extraordinary optical transmission through hole arrays , 2008 .