Mapping and monitoring net primary productivity with AVHRR NDVI time-series: statistical equivalence of cumulative vegetation indices

Abstract In the last two decades, numerous investigators have proposed cumulative vegetation indices (i.e., functions which encode the cumulative effect of NDVI maximum value composite time-series into a single variable) for net primary productivity (NPP) mapping and monitoring on a regional to continental basis. In this paper, we investigate the relationships among three of the most commonly used cumulative vegetation indices, expanding on the definition of equivalence of remotely sensed vegetation indices for decision making. We consider two cumulative vegetation indices as equivalent, if the value of one index is statistically predictable from the value of the other index. Using an annual time-series of broad-scale AVHRR NDVI monthly maximum value composites of the island of Corsica (France), we show that the pairwise linear association among the analysed cumulative vegetation indices shows coefficients of determination ( R 2 ) higher than 0.99. That is, knowing the value of one index is statistically equivalent to knowing the value of the other indices for application purposes.

[1]  S. A. Samson,et al.  Two indices to characterize temporal patterns in the spectral response of vegetation , 1993 .

[2]  J. Cihlar,et al.  Relation between the normalized difference vegetation index and ecological variables , 1991 .

[3]  George Sugihara,et al.  Fractals: A User's Guide for the Natural Sciences , 1993 .

[4]  Alan H. Strahler,et al.  Change-vector analysis in multitemporal space: a tool to detect and categorize land-cover change pro , 1994 .

[5]  Steven W. Running,et al.  A vegetation classification logic-based on remote-sensing for use in global biogeochemical models , 1994 .

[6]  John Townshend,et al.  Multitemporal Dimensionality of Images of Normalized Difference Vegetation Index at Continental Scales , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Julie B. Odenweller,et al.  Crop identification using Landsat temporal-spectral profiles , 1984 .

[8]  T. Carlson,et al.  On the relation between NDVI, fractional vegetation cover, and leaf area index , 1997 .

[9]  Ghassem R. Asrar,et al.  Estimation of total above-ground phytomass production using remotely sensed data , 1985 .

[10]  Jesslyn F. Brown,et al.  Measuring phenological variability from satellite imagery , 1994 .

[11]  C. Justice,et al.  The generation of global fields of terrestrial biophysical parameters from the NDVI , 1994 .

[12]  C. Tucker,et al.  Remote Sensing of Total Dry-Matter Accumulation in Winter Wheat , 1981 .

[13]  B. Holben Characteristics of maximum-value composite images from temporal AVHRR data , 1986 .

[14]  Jesslyn F. Brown,et al.  Development of a land-cover characteristics database for the conterminous U.S. , 1991 .

[15]  William Salas,et al.  Fourier analysis of multi-temporal AVHRR data applied to a land cover classification , 1994 .

[16]  Gérard Dedieu,et al.  Methodology for the estimation of terrestrial net primary production from remotely sensed data , 1994 .

[17]  A. Belward,et al.  The IGBP-DIS global 1km land cover data set, DISCover: First results , 1997 .

[18]  J. Eastman,et al.  Long sequence time series evaluation using standardized principal components , 1993 .

[19]  C. Perry,et al.  Functional equivalence of spectral vegetation indices , 1984 .

[20]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[21]  R. Taddei Maximum Value Interpolated (MVI): A Maximum Value Composite method improvement in vegetation index profiles analysis , 1997 .

[22]  G. Badhwar,et al.  Application of Thematic Mapper data to corn and soybean development stage estimation , 1985 .

[23]  D. Lloyd,et al.  A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery , 1990 .

[24]  R. D. Ramsey,et al.  The relationship between NOAA-AVHRR NDVI and ecoregions in Utah , 1995 .

[25]  J. Faundeen,et al.  The 1 km AVHRR global land data set: first stages in implementation , 1994 .

[26]  Y. Hirosawa,et al.  Application of standardized principal component analysis to land-cover characterization using multitemporal AVHRR data , 1996 .

[27]  A. Anyamba,et al.  Interannual variability of NDVI over Africa and its relation to El Niño/Southern Oscillation , 1996 .

[28]  Eric F. Lambin,et al.  Change Detection at Multiple Temporal Scales: Seasonal and Annual Variations in Landscape Variables , 1996 .

[29]  J. Eidenshink The 1990 conterminous U. S. AVHRR data set , 1992 .

[30]  G. Guyot,et al.  Suivi de la maturation de couverts de blé par radiométrie dans les domaines visible et proche infra-rouge , 1986 .

[31]  R. Benedetti,et al.  Vegetation classification in the middle Mediterranean area by satellite data , 1994 .

[32]  Wout Verhoef,et al.  Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images , 1993 .

[33]  D. Meyer,et al.  Estimating the effective spatial resolution of an AVHRR time series , 1996 .

[34]  J. Townshend,et al.  African Land-Cover Classification Using Satellite Data , 1985, Science.

[35]  C. Tucker,et al.  Satellite remote sensing of primary production , 1986 .

[36]  R. D. Johnson,et al.  Change vector analysis: A technique for the multispectral monitoring of land cover and condition , 1998 .