FDL: A Prototype Formal Digital Library

terms provide a uniform data structure for representing almost any kind of formal content. Abstract terms consist of an operator identifier, a list of parameters , and a list of subterms . The abstract term syntax makes sure that no predefined structure is imposed on the contents of the library and makes parsing unnecessary. All visible structure and nota-

[1]  Christoph Kreitz,et al.  Connection-based Theorem Proving in Classical and Non-classical Logics , 1999, J. Univers. Comput. Sci..

[2]  Per Martin-Löf,et al.  Intuitionistic type theory , 1984, Studies in proof theory.

[3]  J. Gray Information Technology Research: Investing in Our Future , 1999 .

[4]  Lawrence S. Kroll Mathematica--A System for Doing Mathematics by Computer. , 1989 .

[5]  Robert E. Shostak,et al.  Deciding Combinations of Theories , 1982, JACM.

[6]  Christoph Kreitz,et al.  JProver : Integrating Connection-Based Theorem Proving into Interactive Proof Assistants , 2001, IJCAR.

[7]  Lawrence C. Paulson,et al.  Isabelle: The Next 700 Theorem Provers , 2000, ArXiv.

[8]  M. Gordon,et al.  Introduction to HOL: a theorem proving environment for higher order logic , 1993 .

[9]  Greg Nelson,et al.  Simplification by Cooperating Decision Procedures , 1979, TOPL.

[10]  Amy P. Felty,et al.  The Coq proof assistant user's guide : version 5.6 , 1990 .

[11]  Carleen Maitland,et al.  Trust in cyberspace , 2000 .

[12]  Natarajan Shankar,et al.  PVS: Combining Specification, Proof Checking, and Model Checking , 1996, FMCAD.

[13]  Jason Hickey,et al.  Fast Tactic-Based Theorem Proving , 2000, TPHOLs.

[14]  David L. Dill,et al.  The Murphi Verification System , 1996, CAV.

[15]  Christoph Kreitz,et al.  On Transforming Intuitionistic Matrix Proofs into Standard-Sequent Proofs , 1995, TABLEAUX.

[16]  Christoph Kreitz,et al.  Guiding Program Development Systems by a Connection Based Proof Strategy , 1995, LOPSTR.

[17]  Robert L. Constable,et al.  Verbalization of High-Level Formal Proofs , 1999, AAAI/IAAI.

[18]  William McCune,et al.  Solution of the Robbins Problem , 1997, Journal of Automated Reasoning.

[19]  Richard Jüllig,et al.  Specware: Formal Support for Composing Software , 1995, MPC.

[20]  Peter B. Andrews Theorem Proving via General Matings , 1981, JACM.

[21]  Stéphane Bressan,et al.  Introduction to Database Systems , 2005 .

[22]  Christoph Kreitz,et al.  The Nuprl Open Logical Environment , 2000, CADE.

[23]  Gerard J. Holzmann,et al.  The Model Checker SPIN , 1997, IEEE Trans. Software Eng..

[24]  Narciso Martí-Oliet,et al.  The Maude System , 1999, RTA.

[25]  Rick Stevens,et al.  Automated Reasoning Contributed to Mathematics and Logic , 1990, CADE.

[26]  Kenneth L. McMillan,et al.  Symbolic model checking , 1992 .

[27]  Wolfgang Bibel,et al.  SETHEO: A high-performance theorem prover , 1992, Journal of Automated Reasoning.

[28]  Wolfgang Bibel,et al.  On Matrices with Connections , 1981, JACM.

[29]  de Ng Dick Bruijn,et al.  A survey of the project Automath , 1980 .

[30]  Volker Sorge,et al.  Integrating Tps and Omega , 1999, J. Univers. Comput. Sci..

[31]  Christoph Kreitz,et al.  T-String Unification: Unifying Prefixes in Non-classical Proof Methods , 1996, TABLEAUX.

[32]  Pavel Naumov Publishing Formal Mathematics on the Web , 1998 .

[33]  Sérgio Vale Aguiar Campos,et al.  Symbolic Model Checking , 1993, CAV.

[34]  F. Dick A survey of the project Automath , 1980 .

[35]  Craig A. Knoblock,et al.  Advanced Programming in the UNIX Environment , 1992, Addison-Wesley professional computing series.

[36]  Rance Cleaveland,et al.  Implementing mathematics with the Nuprl proof development system , 1986 .

[37]  Christoph Kreitz,et al.  A Uniform Procedure for Converting Matrix Proofs into Sequent-Style Systems , 2000, Inf. Comput..

[38]  Robert L. Constable,et al.  Creating and evaluating interactive formal courseware for mathematics and computing , 1996, Technology-Based Re-Engineering Engineering Education Proceedings of Frontiers in Education FIE'96 26th Annual Conference.

[39]  Jens Otten,et al.  A Connection Based Proof Method for Intuitionistic Logic , 1995, TABLEAUX.

[40]  Zuber,et al.  Proof Theory at Work: Program Development in the Minlog System , 1998 .