A Simple and Comprehensive Saturation Packet Delay Model for Wireless Industrial Networks

With the emerging popularity of the wireless local area network technology, many analytical models for its main medium access control mechanism, Distributed Coordination Function (DCF), have been reported. However, most of them are based on some oversimplifying assumptions, or need very complicated mathematical manipulations. In this paper, a simple and accurate packet delay model has been proposed for the IEEE 802.11 DCF mechanism in saturated traffic and error-prone industrial applications which is based on a modified discrete-time Markov chain model of the DCF mechanism which accounts for the backoff freezing. It estimates various delay parameters including the average, jitter, Cumulative Distribution Function, and the effect of Retry Limit. The simulation results confirm the accuracy of the proposed delay model compared with other similar models in the literature.

[1]  Ilenia Tinnirello,et al.  Rethinking the IEEE 802.11e EDCA performance modeling methodology , 2010, TNET.

[2]  Marek Natkaniec,et al.  3D Markov chain-based saturation throughput model of IEEE 802.11 EDCA , 2011 .

[3]  Sonia Aïssa,et al.  A Novel Analytical Model for Service Delay in IEEE 802.11 Networks , 2012, IEEE Systems Journal.

[4]  Weijia Jia,et al.  Comprehensive QoS analysis of enhanced distributed channel access in wireless local area networks , 2012, Inf. Sci..

[5]  Periklis Chatzimisios,et al.  Achieving performance enhancement in IEEE 802.11 WLANs by using the DIDD backoff mechanism: Research Articles , 2007 .

[6]  Periklis Chatzimisios,et al.  Performance analysis of the IEEE 802.11 MAC protocol for wireless LANs: Research Articles , 2005 .

[7]  Qinglin Zhao,et al.  Modeling Nonsaturated IEEE 802.11 DCF Networks Utilizing an Arbitrary Buffer Size , 2011, IEEE Transactions on Mobile Computing.

[8]  Zhenghong Liu,et al.  Modeling the IEEE 802.11 DCF with Hidden Stations , 2012 .

[9]  Shih-Hau Fang,et al.  Fairness analysis of throughput and delay in WLAN environments with channel diversities , 2011, EURASIP J. Wirel. Commun. Netw..

[10]  Yu-Chu Tian,et al.  Modelling and performance evaluation of the IEEE 802.11 DCF for real-time control , 2012, Comput. Networks.

[11]  Periklis Chatzimisios,et al.  Achieving performance enhancement in IEEE 802.11 WLANs by using the DIDD backoff mechanism , 2007, Int. J. Commun. Syst..

[12]  Vasileios Vitsas,et al.  Packet Delay Metrics for IEEE 802.11 Distributed Coordination Function , 2009, Mob. Networks Appl..

[13]  Eylem Ekici,et al.  Single Hop IEEE 802.11 DCF Analysis Revisited: Accurate Modeling of Channel Access Delay and Throughput for Saturated and Unsaturated Traffic Cases , 2011, IEEE Transactions on Wireless Communications.

[14]  Seyed Ahmad Motamedi,et al.  Delay-Reliability Trade-off in MIMO-Enabled IEEE 802.11-Based Wireless Sensor and Actuator Networks , 2011, ANT/MobiWIS.

[15]  Syed Faraz Hasan,et al.  Developments and Constraints in 802.11-Based Roadside-to-Vehicle Communications , 2013, Wirel. Pers. Commun..

[16]  Periklis Chatzimisios,et al.  Performance analysis of the IEEE 802.11 MAC protocol for wireless LANs , 2005, Int. J. Commun. Syst..

[17]  Tiejun Lv,et al.  Canceling Interferences for High Data Rate Time Reversal MIMO UWB System: A Precoding Approach , 2011, EURASIP J. Wirel. Commun. Netw..

[18]  Shengming Jiang,et al.  Traffic-Aware Link Rate Adaptation for Multi-rate 802.11 Networks , 2013, Wirel. Pers. Commun..

[19]  Periklis Chatzimisios,et al.  Influence of channel BER on IEEE 802.11 DCF , 2003 .

[20]  I.N. Vukovic,et al.  Delay analysis of different backoff algorithms in IEEE 802.11 , 2004, IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004.

[21]  Seyed Ahmad Motamedi,et al.  A Simple and Closed-Form Access Delay Model for Reliable IEEE 802.11-Based Wireless Industrial Networks , 2014, Wirel. Pers. Commun..

[22]  Hai Le Vu,et al.  MAC Access Delay of IEEE 802.11 DCF , 2007, IEEE Transactions on Wireless Communications.

[23]  Keping Long,et al.  Modeling Channel Access Delay and Jitter of IEEE 802.11 DCF , 2008, Wirel. Pers. Commun..

[24]  Andreas Willig,et al.  Recent and Emerging Topics in Wireless Industrial Communications: A Selection , 2008, IEEE Transactions on Industrial Informatics.

[25]  Gianluca Cena,et al.  Evaluation of Response Times in Industrial WLANs , 2007, IEEE Transactions on Industrial Informatics.

[26]  Jeffrey B. Carruthers,et al.  Collision Localization for IEEE 802.11 Wireless LANs , 2012, Wirel. Pers. Commun..

[27]  Yang Xiao,et al.  Refinements on IEEE 802.11 Distributed Coordination Function Modeling Approaches , 2010, IEEE Transactions on Vehicular Technology.

[28]  Gianluca Cena,et al.  On the Performance of IEEE 802.11e Wireless Infrastructures for Soft-Real-Time Industrial Applications , 2010, IEEE Transactions on Industrial Informatics.

[29]  Wonjung Kim,et al.  A Cross-Layer Approach to Reduce Channel Access Delay Jitter in IEEE 802.11 WLANs , 2013, Wirel. Pers. Commun..

[30]  Ilenia Tinnirello,et al.  Remarks on IEEE 802.11 DCF performance analysis , 2005, IEEE Communications Letters.

[31]  Xinghua Sun,et al.  A Unified Analysis of IEEE 802.11 DCF Networks: Stability, Throughput, and Delay , 2013, IEEE Transactions on Mobile Computing.

[32]  Periklis Chatzimisios,et al.  Packet delay analysis of IEEE 802.11 MAC protocol , 2003 .

[33]  Seyed Ahmad Motamedi,et al.  EDCA delay analysis of spatial diversity in IEEE 802.11-based real-time wireless sensor and actuator networks , 2011, 2011 8th International Symposium on Wireless Communication Systems.