High performance solid-state supercapacitor with PVA–KOH–K3[Fe(CN)6] gel polymer as electrolyte and separator

Abstract A gel polymer PVA–KOH–K 3 [Fe(CN) 6 ] is prepared by potassium hydroxide and potassium ferricyanide doped polyvinyl alcohol, and a solid-state supercapacitor is assembled using the gel polymer as electrolyte and separator, activated carbons as electrode. The gel polymer exhibits flexible, high ionic conductivity and wide potential properties. The electrochemical properties of the supercapacitor are investigated using cyclic voltammetry, galvanostatic charge/discharge, and impedance spectroscopy techniques. The electrode specific capacitance of the supercapacitor can be as high as 430.95 F g −1 , and after 1000 cycles at a current density of 1 A g −1 it still remains higher than 380 F g −1 . The energy density and power density of the supercapacitor reach 57.94 Wh kg −1 and 59.84 kW kg −1 , respectively. These novel flexible gel polymers are desirable for applications in supercapacitor devices.

[1]  Chun–Chen Yang,et al.  All solid-state electric double-layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes , 2005 .

[2]  Xiaogang Zhang,et al.  All solid-state supercapacitor with phosphotungstic acid as the proton-conducting electrolyte , 2004 .

[3]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[4]  A. Samui,et al.  All solid supercapacitor based on polyaniline and crosslinked sulfonated poly[ether ether ketone] , 2010 .

[5]  Pulickel M. Ajayan,et al.  Fast Electron Transfer Kinetics on Multiwalled Carbon Nanotube Microbundle Electrodes , 2001 .

[6]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[7]  P. Jannasch Ion conducting electrolytes based on aggregating comblike poly(propylene oxide) , 2001 .

[8]  G. Lu,et al.  Highly stable performance of supercapacitors from phosphorus-enriched carbons. , 2009, Journal of the American Chemical Society.

[9]  Masaki Yamagata,et al.  An acidic cellulose-chitin hybrid gel as novel electrolyte for an electric double layer capacitor , 2009 .

[10]  Agnieszka Pawlicka,et al.  Conductivity study of a gelatin-based polymer electrolyte , 2007 .

[11]  Youlong Xu,et al.  Template-free prepared micro/nanostructured polypyrrole with ultrafast charging/discharging rate and long cycle life , 2011 .

[12]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[13]  Quan-min Li,et al.  Determination of isoniazid among pharmaceutical samples and the patients’ saliva samples by using potassium ferricyanide as spectroscopic probe reagent , 2008 .

[14]  G. Chen,et al.  Electrochemical Capacitance of a Nanoporous Composite of Carbon Nanotubes and Polypyrrole , 2002 .

[15]  Hui Peng,et al.  In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor , 2013 .

[16]  Nae-Lih Wu,et al.  Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte , 2008 .

[17]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[18]  B. V. Tilak,et al.  Materials for electrochemical capacitors: Theoretical and experimental constraints , 1996 .

[19]  S. Prabaharan,et al.  Nanostructured mesoporous carbon as electrodes for supercapacitors , 2006 .

[20]  Grzegorz Lota,et al.  Striking capacitance of carbon/iodide interface , 2009 .

[21]  Hui Peng,et al.  Facile fabrication of self-assembled polyaniline nanotubes doped with d-tartaric acid for high-performance supercapacitors , 2013 .

[22]  Jihuai Wu,et al.  A Novel Thermosetting Gel Electrolyte for Stable Quasi‐Solid‐State Dye‐Sensitized Solar Cells , 2007 .

[23]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[24]  Peng Wang,et al.  A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte , 2003, Nature materials.

[25]  A. Calokerinos,et al.  Continuous-flow chemiluminometric determination of some tetracyclines , 1991 .

[26]  A. Arof,et al.  Plasticized chitosan–PVA blend polymer electrolyte based proton battery , 2010 .

[27]  J Du,et al.  Flow injection chemiluminescence determination of polyhydroxy phenols using luminol-ferricyanide/ferrocyanide system. , 2001, Talanta.

[28]  M. Ingram,et al.  ‘Ladder-doped’ polypyrrole: a possible electrode material for inclusion in electrochemical supercapacitors? , 2004 .

[29]  Philip G. Whitten,et al.  High strain stretchable solid electrolytes , 2013 .

[30]  Y. Kumar,et al.  Gel Polymer Electrolyte Based Electrical Double Layer Capacitors: Comparative Study with Multiwalled Carbon Nanotubes and Activated Carbon Electrodes , 2012 .

[31]  S. T. Senthilkumar,et al.  Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte , 2013 .

[32]  Zhang Lan,et al.  A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor , 2012 .

[33]  B. Scrosati,et al.  High-performance gel-type lithium electrolyte membranes , 1999 .

[34]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[35]  Yan Liu,et al.  Improvement of the capacitive performances for Co-Al layered double hydroxide by adding hexacyanoferrate into the electrolyte. , 2009, Physical chemistry chemical physics : PCCP.

[36]  Deyong He,et al.  Chemiluminescence microflow injection analysis system on a chip for the determination of nitrite in food , 2007 .

[37]  I. Hsing,et al.  Influence of anode diffusion layer on the performance of a liquid feed direct methanol fuel cell by AC impedance spectroscopy , 2006 .

[38]  W. Meyer,et al.  Polymer electrolytes for lithium-ion batteries. , 1998, Advanced materials.

[39]  H. Lee,et al.  Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries , 2004 .

[40]  K. Méténier,et al.  Supercapacitor electrodes from multiwalled carbon nanotubes , 2000 .

[41]  Leqing Fan,et al.  Improvement of the performance for quasi-solid-state supercapacitor by using PVA–KOH–KI polymer gel electrolyte , 2011 .

[42]  Kenzo Maehashi,et al.  Single-walled carbon nanotube-arrayed microelectrode chip for electrochemical analysis , 2007 .

[43]  R. Latham,et al.  Conducting polymer‐based electrochemical redox supercapacitors using proton and lithium ion conducting polymer electrolytes , 1998 .