The Ã2Σ+ ← X 2Π transition of the NO-CH4 and NO-CD4 complexes
暂无分享,去创建一个
[1] T. G. Wright,et al. The à 2Σ+ state of Ar⋅NO , 2000 .
[2] M. Raimondi,et al. Applications of a variational coupled-electron pair approach to the calculation of intermolecular interaction in the framework of the VB theory: Study of the van der Waals complex He–CH4 , 2000 .
[3] T. G. Wright,et al. Further investigations of the Ã←X̃ transition of the Kr·NO and Xe·NO complexes using (1+1) REMPI spectroscopy , 2000 .
[4] Edmond P. F. Lee,et al. The interaction energies of the Rg·NO+ cationic complexes: Rn·NO+ , 2000 .
[5] Y. Kim,et al. Rotationally resolved overtone spectroscopy of the NO–Ar complex , 2000 .
[6] J. Sadlej,et al. Ab initio study for the intermolecular potential of the water–nitric oxide complex , 2000 .
[7] J. D. Barr,et al. Electronic and photoelectron spectroscopy of Rg·NO (Rg = rare as), NO·N2 and NO·CH4 molecular complexes , 1998 .
[8] Y. Kim,et al. Two-photon spectroscopy of the NO–Ne complex , 1998 .
[9] Edmond P. F. Lee,et al. Geometries and Binding Energies of Rg·NO+ Cationic Complexes (Rg = He, Ne, Ar, Kr, and Xe) , 1998 .
[10] Edmond P. F. Lee,et al. A CCSD(T) STUDY OF THE HE.NO MOLECULAR COMPLEX , 1998 .
[11] T. G. Wright,et al. The à 2Σ+ state of Ar⋅NO studied using resonance-enhanced multiphoton and zero-kinetic-energy pulsed-field ionization spectroscopy , 1998 .
[12] K. Shibuya,et al. Electronic spectroscopy and predissociation mechanism of Ar–NO in the 3p Rydberg states , 1998 .
[13] B. Lévy,et al. A, C, and D electronic states of the Ar–NO van der Waals molecule revisited: Experiment and theory , 1998 .
[14] Edmond P. F. Lee,et al. Effect of basis set on the calculated geometry of the CH4[middot] HCl complex , 1998 .
[15] Edmond P. F. Lee,et al. The geometric structure and stability of the NO+·CH4 cationic complex , 1997 .
[16] H. Meyer. Two-photon spectroscopy of the low lying Rydberg states of NO. II. Application to the NO–Ar complex , 1997 .
[17] D. W. Ball. G2 Calculations of Weak Molecular Complexes: H2O-NO , 1997 .
[18] M. Zachwieja,et al. Reinvestigation of the Emission ? Band System ( A 2S + X 2?) of the NO Molecule , 1997 .
[19] T. G. Wright,et al. One‐ and two‐color resonance‐enhanced multiphoton ionization spectroscopy of the Kr⋅NO complex via the à 2Σ+ state , 1996 .
[20] M. Alexander,et al. Ab initio potential energy surfaces and quantum scattering studies of NO(X 2Π) with He: Λ‐doublet resolved rotational and electronic fine‐structure transitions , 1995 .
[21] K. Shibuya,et al. Van der Waals vibrations of NO-methane complexes in the A2∑+ state , 1995 .
[22] G. Olah,et al. ELECTROPHILIC SUBSTITUTION OF METHANE REVISITED , 1995 .
[23] K. Shibuya,et al. Intermolecular Vibrations of the Complex of NO in the nsσ Rydberg States and Ar , 1995 .
[24] H. Schaefer,et al. The Electrophilic Reactions of Aliphatic Hydrocarbons: Substitution and Cleavage of Ethane by NO+ , 1995 .
[25] G. T. Fraser,et al. The Microwave Spectrum of CH4-H2O , 1994 .
[26] G. W. Lemire,et al. Bound—bound ArNO AX vibronic transitions. New mass-resolved 1+1 REMPI observations , 1994 .
[27] B. Howard,et al. Spectroscopy and dynamics of rare gas–spherical top complexes. The infrared spectrum of the ν3 band of argon–silane , 1994 .
[28] B. Howard,et al. A model for the energy levels of rare gas–spherical top van der Waals complexes , 1994 .
[29] K. Shibuya,et al. Bound–bound A 2Σ+–X 2Π transition of NO–Ar van der Waals complexes , 1994 .
[30] J. Hutson,et al. Atom‐spherical top van der Waals complexes: A theoretical study , 1994 .
[31] R. C. Cohen,et al. Far infrared vibration‐rotation‐tunneling spectroscopy and internal dynamics of methane–water: A prototypical hydrophobic system , 1994 .
[32] A. Mckellar. Long-path equilibrium IR spectra of weakly bound complexes at low temperatures , 1994 .
[33] H. Schaefer,et al. Mechanisms of electrophilic substitutions of aliphatic hydrocarbons: methane + nitrosonium cation , 1993 .
[34] W. Fawzy. Electron-Spin Electron-Spin, Electron-Spin Rotation Interactions, and Quartic Centrifugal Distortion Terms for an Open-Shell Diatomic Molecule van der Waals Bonded to a Closed-Shell Partner , 1993 .
[35] G. Bacskay,et al. Quantum-chemical study of the CH4⋯HCl complex , 1993 .
[36] W. Breckenridge,et al. Half‐collision studies: Action spectroscopy of electronic energy transfer within the Cd⋅CH4 van der Waals complex , 1992 .
[37] Y. Ohshima,et al. Rotational spectrum and internal rotation of a methane–HCl complex , 1990 .
[38] A. Wallwork,et al. Rotational spectra and geometries of the gas-phase dimers (CH4,HF) and (CH4,HCl) , 1990 .
[39] J. Hougen,et al. Rotational energy levels and line intensities for 2S+1Λ-2S+1Λ and 2S+1(Λ ± 1)-2S+1Λ transitions in a diatomic molecule van der Waals bonded to a closed shell partner , 1989 .
[40] J. Miller. The A 2Σ+ state of rare gas–NO van der Waals molecules probed by 1+1 multiphoton ionization spectroscopy , 1989 .
[41] B. Soep,et al. Potential characteristics of the mercury-methane van der Waals complex , 1987 .
[42] K. Fuke,et al. Electronic spectra and intramultiplet relaxation of jet‐cooled Hg–CH4, –C2H6, –N2, and –CO complexes , 1987 .
[43] J. Miller. Multiphoton spectroscopy of X–NO (X=Kr, Xe, CH4) van der Waals molecules , 1987 .
[44] B. Howard,et al. Rotational spectra of rare gas-nitric oxide van der Waals molecules. Part 1. Theory of the rotational energy levels , 1986 .
[45] Y. Achiba,et al. The Ar–NO van der Waals complex studied by resonant multiphoton ionization spectroscopy involving photoion and photoelectron measurements , 1984 .
[46] P. Langridge-Smith,et al. The direct photodissociation of the van der Waals molecule NO–Ar , 1981 .