The Ã2Σ+ ← X 2Π transition of the NO-CH4 and NO-CD4 complexes

NO·CH4 and NO·CD4 were studied in a molecular beam, using (1 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy. A detailed spectrum results in each case, with a series of bands observed, assigned to intermolecular vibrations onto which is superimposed further structure. The origin of this further structure is discussed in the light of previous studies. From the spectrum, a number of intermolecular vibrational frequencies in the A state were obtained. D0′ for NO·CH4 (NO·CD4) was measured as 211 (238) cm−1; with D0″ for NO·CH4 (NO·CD4) being derived as 117 (122) cm−1. Ab initio calculations were performed on the state, and it is deduced that the state has a Cs global minimum, with the NO pointing towards a CH3 face, with the N tilted towards the methane. That said, from the energetic proximity of a number of stationary points, the complex is expected to be performing wide amplitude motion, sampling a wide range of energies even with the zero-point energy.

[1]  T. G. Wright,et al.  The à 2Σ+ state of Ar⋅NO , 2000 .

[2]  M. Raimondi,et al.  Applications of a variational coupled-electron pair approach to the calculation of intermolecular interaction in the framework of the VB theory: Study of the van der Waals complex He–CH4 , 2000 .

[3]  T. G. Wright,et al.  Further investigations of the Ã←X̃ transition of the Kr·NO and Xe·NO complexes using (1+1) REMPI spectroscopy , 2000 .

[4]  Edmond P. F. Lee,et al.  The interaction energies of the Rg·NO+ cationic complexes: Rn·NO+ , 2000 .

[5]  Y. Kim,et al.  Rotationally resolved overtone spectroscopy of the NO–Ar complex , 2000 .

[6]  J. Sadlej,et al.  Ab initio study for the intermolecular potential of the water–nitric oxide complex , 2000 .

[7]  J. D. Barr,et al.  Electronic and photoelectron spectroscopy of Rg·NO (Rg = rare as), NO·N2 and NO·CH4 molecular complexes , 1998 .

[8]  Y. Kim,et al.  Two-photon spectroscopy of the NO–Ne complex , 1998 .

[9]  Edmond P. F. Lee,et al.  Geometries and Binding Energies of Rg·NO+ Cationic Complexes (Rg = He, Ne, Ar, Kr, and Xe) , 1998 .

[10]  Edmond P. F. Lee,et al.  A CCSD(T) STUDY OF THE HE.NO MOLECULAR COMPLEX , 1998 .

[11]  T. G. Wright,et al.  The à 2Σ+ state of Ar⋅NO studied using resonance-enhanced multiphoton and zero-kinetic-energy pulsed-field ionization spectroscopy , 1998 .

[12]  K. Shibuya,et al.  Electronic spectroscopy and predissociation mechanism of Ar–NO in the 3p Rydberg states , 1998 .

[13]  B. Lévy,et al.  A, C, and D electronic states of the Ar–NO van der Waals molecule revisited: Experiment and theory , 1998 .

[14]  Edmond P. F. Lee,et al.  Effect of basis set on the calculated geometry of the CH4[middot] HCl complex , 1998 .

[15]  Edmond P. F. Lee,et al.  The geometric structure and stability of the NO+·CH4 cationic complex , 1997 .

[16]  H. Meyer Two-photon spectroscopy of the low lying Rydberg states of NO. II. Application to the NO–Ar complex , 1997 .

[17]  D. W. Ball G2 Calculations of Weak Molecular Complexes: H2O-NO , 1997 .

[18]  M. Zachwieja,et al.  Reinvestigation of the Emission ? Band System ( A 2S + X 2?) of the NO Molecule , 1997 .

[19]  T. G. Wright,et al.  One‐ and two‐color resonance‐enhanced multiphoton ionization spectroscopy of the Kr⋅NO complex via the à 2Σ+ state , 1996 .

[20]  M. Alexander,et al.  Ab initio potential energy surfaces and quantum scattering studies of NO(X 2Π) with He: Λ‐doublet resolved rotational and electronic fine‐structure transitions , 1995 .

[21]  K. Shibuya,et al.  Van der Waals vibrations of NO-methane complexes in the A2∑+ state , 1995 .

[22]  G. Olah,et al.  ELECTROPHILIC SUBSTITUTION OF METHANE REVISITED , 1995 .

[23]  K. Shibuya,et al.  Intermolecular Vibrations of the Complex of NO in the nsσ Rydberg States and Ar , 1995 .

[24]  H. Schaefer,et al.  The Electrophilic Reactions of Aliphatic Hydrocarbons: Substitution and Cleavage of Ethane by NO+ , 1995 .

[25]  G. T. Fraser,et al.  The Microwave Spectrum of CH4-H2O , 1994 .

[26]  G. W. Lemire,et al.  Bound—bound ArNO AX vibronic transitions. New mass-resolved 1+1 REMPI observations , 1994 .

[27]  B. Howard,et al.  Spectroscopy and dynamics of rare gas–spherical top complexes. The infrared spectrum of the ν3 band of argon–silane , 1994 .

[28]  B. Howard,et al.  A model for the energy levels of rare gas–spherical top van der Waals complexes , 1994 .

[29]  K. Shibuya,et al.  Bound–bound A 2Σ+–X 2Π transition of NO–Ar van der Waals complexes , 1994 .

[30]  J. Hutson,et al.  Atom‐spherical top van der Waals complexes: A theoretical study , 1994 .

[31]  R. C. Cohen,et al.  Far infrared vibration‐rotation‐tunneling spectroscopy and internal dynamics of methane–water: A prototypical hydrophobic system , 1994 .

[32]  A. Mckellar Long-path equilibrium IR spectra of weakly bound complexes at low temperatures , 1994 .

[33]  H. Schaefer,et al.  Mechanisms of electrophilic substitutions of aliphatic hydrocarbons: methane + nitrosonium cation , 1993 .

[34]  W. Fawzy Electron-Spin Electron-Spin, Electron-Spin Rotation Interactions, and Quartic Centrifugal Distortion Terms for an Open-Shell Diatomic Molecule van der Waals Bonded to a Closed-Shell Partner , 1993 .

[35]  G. Bacskay,et al.  Quantum-chemical study of the CH4⋯HCl complex , 1993 .

[36]  W. Breckenridge,et al.  Half‐collision studies: Action spectroscopy of electronic energy transfer within the Cd⋅CH4 van der Waals complex , 1992 .

[37]  Y. Ohshima,et al.  Rotational spectrum and internal rotation of a methane–HCl complex , 1990 .

[38]  A. Wallwork,et al.  Rotational spectra and geometries of the gas-phase dimers (CH4,HF) and (CH4,HCl) , 1990 .

[39]  J. Hougen,et al.  Rotational energy levels and line intensities for 2S+1Λ-2S+1Λ and 2S+1(Λ ± 1)-2S+1Λ transitions in a diatomic molecule van der Waals bonded to a closed shell partner , 1989 .

[40]  J. Miller The A 2Σ+ state of rare gas–NO van der Waals molecules probed by 1+1 multiphoton ionization spectroscopy , 1989 .

[41]  B. Soep,et al.  Potential characteristics of the mercury-methane van der Waals complex , 1987 .

[42]  K. Fuke,et al.  Electronic spectra and intramultiplet relaxation of jet‐cooled Hg–CH4, –C2H6, –N2, and –CO complexes , 1987 .

[43]  J. Miller Multiphoton spectroscopy of X–NO (X=Kr, Xe, CH4) van der Waals molecules , 1987 .

[44]  B. Howard,et al.  Rotational spectra of rare gas-nitric oxide van der Waals molecules. Part 1. Theory of the rotational energy levels , 1986 .

[45]  Y. Achiba,et al.  The Ar–NO van der Waals complex studied by resonant multiphoton ionization spectroscopy involving photoion and photoelectron measurements , 1984 .

[46]  P. Langridge-Smith,et al.  The direct photodissociation of the van der Waals molecule NO–Ar , 1981 .