High-throughput sequencing approaches applied to SARS-CoV-2

High-throughput sequencing is crucial for surveillance and control of viral outbreaks. During the ongoing coronavirus disease 2019 (COVID-19) pandemic, advances in the high-throughput sequencing technology resources have enhanced diagnosis, surveillance, and vaccine discovery. From the onset of the pandemic in December 2019, several genome-sequencing approaches have been developed and supported across the major sequencing platforms such as Illumina, Oxford Nanopore, PacBio, MGI DNBSEQTM and Ion Torrent. Here, we share insights from the sequencing approaches developed for sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between December 2019 and October 2022.

[1]  S. Buyske,et al.  Identification of SARS-CoV-2 variants using viral sequencing for the Centers for Disease Control and Prevention genomic surveillance program , 2022, BMC Infectious Diseases.

[2]  B. La Scola,et al.  SARS-CoV-2 testing of aircraft wastewater shows that mandatory tests and vaccination pass before boarding did not prevent massive importation of Omicron variant in Europe , 2022, medRxiv.

[3]  C. Agoti,et al.  Optimization of the SARS-CoV-2 ARTIC Network V4 Primers and Whole Genome Sequencing Protocol , 2022, Frontiers in Medicine.

[4]  Y. Liu,et al.  Development and validation of a high throughput SARS-CoV-2 whole genome sequencing workflow in a clinical laboratory , 2022, Scientific Reports.

[5]  N. Prystajecky,et al.  Rapid, High-Throughput, Cost Effective Whole Genome Sequencing of SARS-CoV-2 Using a Condensed One Hour Library Preparation of the Illumina DNA Prep Kit , 2022, medRxiv.

[6]  Yaniv Erlich,et al.  A scalable pipeline for SARS-CoV-2 replicon construction based on de-novo synthesis , 2022, bioRxiv.

[7]  S. Zeger,et al.  Impact of SARS-CoV-2 variants on inpatient clinical outcome , 2022, medRxiv.

[8]  T. McCaffrey,et al.  RNA Sequencing in COVID-19 patients identifies neutrophil activation biomarkers as a promising diagnostic platform for infections , 2022, PloS one.

[9]  W. Preiser,et al.  Tracking the circulating SARS-CoV-2 variant of concern in South Africa using wastewater-based epidemiology , 2022, Scientific Reports.

[10]  G. Schroth,et al.  Evaluation of an optimized protocol and Illumina ARTIC V4 primer pool for sequencing of SARS-CoV-2 using COVIDSeq™ and DRAGEN™ COVID Lineage App workflow , 2022, bioRxiv.

[11]  A. Tabuenca,et al.  Rapid detection of the widely circulating B.1.617.2 (Delta) SARS-CoV-2 variant , 2022, Pathology.

[12]  S. Zapperi,et al.  Evidence of a SARS-CoV-2 double Spike mutation D614G/S939F potentially affecting immune response of infected subjects , 2022, Computational and Structural Biotechnology Journal.

[13]  K. Bibby,et al.  Detection of the Omicron (B.1.1.529) variant of SARS-CoV-2 in aircraft wastewater , 2022, Science of The Total Environment.

[14]  G. Rodger,et al.  Rapid turnaround multiplex sequencing of SARS-CoV-2: comparing tiling amplicon protocol performance , 2022, medRxiv.

[15]  M. Kraemer,et al.  Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa , 2021, Nature.

[16]  O. Pybus,et al.  Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant , 2021, Nature communications.

[17]  C. Marquette,et al.  Setting-Up a Rapid SARS-CoV-2 Genome Assessment by Next-Generation Sequencing in an Academic Hospital Center (LPCE, Louis Pasteur Hospital, Nice, France) , 2022, Frontiers in Medicine.

[18]  R. Wilson,et al.  A deletion in the N gene of SARS-CoV-2 may reduce test sensitivity for detection of SARS-CoV-2 , 2021, Diagnostic Microbiology and Infectious Disease.

[19]  M. Bracho,et al.  Spatial and temporal distribution of SARS-CoV-2 diversity circulating in wastewater , 2021, Water Research.

[20]  J. Izopet,et al.  Prediction of SARS-CoV-2 Variant Lineages Using the S1-Encoding Region Sequence Obtained by PacBio Single-Molecule Real-Time Sequencing , 2021, Viruses.

[21]  B. K. Matin,et al.  Wastewater surveillance for SARS-CoV-2 in a small coastal community: Effects of tourism on viral presence and variant identification among low prevalence populations , 2021, Environmental Research.

[22]  L. Kruglyak,et al.  Lower SARS-CoV-2 viral shedding following COVID-19 vaccination among healthcare workers in Los Angeles, California , 2021, Open Forum Infectious Diseases.

[23]  A. Amonsin,et al.  First cases of SARS‐CoV‐2 infection in dogs and cats in Thailand , 2021, Transboundary and emerging diseases.

[24]  M. Stenglein,et al.  SARS-CoV-2 evolution in animals suggests mechanisms for rapid variant selection , 2021, Proceedings of the National Academy of Sciences.

[25]  P. May,et al.  Genome Sequencing of SARS-CoV-2 Allows Monitoring of Variants of Concern through Wastewater , 2021, Water.

[26]  William T. Harvey,et al.  Genomic reconstruction of the SARS-CoV-2 epidemic in England , 2021, Nature.

[27]  A. Cook,et al.  Viral genome-based Zika virus transmission dynamics in a paediatric cohort during the 2016 Nicaragua epidemic , 2021, EBioMedicine.

[28]  Rick L. Stevens,et al.  Analysis of the ARTIC Version 3 and Version 4 SARS-CoV-2 Primers and Their Impact on the Detection of the G142D Amino Acid Substitution in the Spike Protein , 2021, bioRxiv.

[29]  K. St. George,et al.  Whole-Genome Sequencing of SARS-CoV-2: Assessment of the Ion Torrent AmpliSeq Panel and Comparison with the Illumina MiSeq ARTIC Protocol , 2021, Journal of clinical microbiology.

[30]  D. Gerrity,et al.  SARS-CoV-2 variant detection at a university dormitory using wastewater genomic tools , 2021, Science of The Total Environment.

[31]  Pawel P. Labaj,et al.  Expansion of a SARS-CoV-2 Delta variant with an 872 nt deletion encompassing ORF7a, ORF7b and ORF8, Poland, July to August 2021 , 2021, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[32]  A. Argiriou,et al.  Outbreaks of SARS-CoV-2 in naturally infected mink farms: Impact, transmission dynamics, genetic patterns, and environmental contamination , 2021, PLoS pathogens.

[33]  G. Iraola,et al.  Real-Time Genomic Surveillance for SARS-CoV-2 Variants of Concern, Uruguay , 2021, Emerging infectious diseases.

[34]  F. Antoneli,et al.  Direct RNA Sequencing Reveals SARS-CoV-2 m6A Sites and Possible Differential DRACH Motif Methylation among Variants , 2021, bioRxiv.

[35]  T. Bedford,et al.  Emergence and expansion of SARS-CoV-2 B.1.526 after identification in New York , 2021, Nature.

[36]  A. Manges,et al.  Nanopore metagenomic sequencing for detection and characterization of SARS-CoV-2 in clinical samples , 2021, medRxiv.

[37]  A. Oxenius,et al.  DeepSARS: simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2 , 2021, BMC Genomics.

[38]  J. Mingorance,et al.  High Throughput Semi-Automated SARS-CoV-2 Library Preparation Protocol for Ion Torrent Sequencing using Opentrons, New England Biolabs Kit, and ARTIC Primers v2 , 2021, protocols.io.

[39]  Patrick Y. Liu,et al.  Pediatric Household Transmission of Severe Acute Respiratory Coronavirus-2 Infection—Los Angeles County, December 2020 to February 2021 , 2021, The Pediatric infectious disease journal.

[40]  V. Sintchenko,et al.  SARS-CoV-2 Genome Sequencing Methods Differ in Their Abilities To Detect Variants from Low-Viral-Load Samples , 2021, Journal of clinical microbiology.

[41]  L. Solari,et al.  Genomic analysis reveals a rapid spread and predominance of lambda (C.37) SARS‐COV‐2 lineage in Peru despite circulation of variants of concern , 2021, Journal of medical virology.

[42]  Isabel Gautreau NEBNext® ARTIC Protocols Collection v1 , 2021 .

[43]  J. L. Villanueva-Cañas,et al.  Implementation of an open-source robotic platform for SARS-CoV-2 testing by real-time RT-PCR , 2021, PloS one.

[44]  G. Williams,et al.  SARS-CoV-2 testing and sequencing for international arrivals reveals significant cross border transmission of high risk variants into the United Kingdom , 2021, EClinicalMedicine.

[45]  Ivon Harliwong,et al.  Novel Multiplexed Amplicon-Based Sequencing to Quantify SARS-CoV-2 RNA from Wastewater , 2021, Environmental science & technology letters.

[46]  Scott M. Williams,et al.  Global variation in sequencing impedes SARS-CoV-2 surveillance , 2021, PLoS genetics.

[47]  Jonathan L. Schmid-Burgk,et al.  LAMP-Seq enables sensitive, multiplexed COVID-19 diagnostics using molecular barcoding , 2021, Nature Biotechnology.

[48]  T. S. Manning,et al.  Viral metagenomics reveals the presence of novel Zika virus variants in Aedes mosquitoes from Barbados , 2021, Parasites & vectors.

[49]  J. Flannery,et al.  A random priming amplification method for whole genome sequencing of SARS-CoV-2 and H1N1 influenza A virus , 2021, bioRxiv.

[50]  V. Pravica,et al.  Immune Evasion of SARS-CoV-2 Emerging Variants: What Have We Learnt So Far? , 2021, Viruses.

[51]  S. Lackner,et al.  A pan-European study of SARS-CoV-2 variants in wastewater under the EU Sewage Sentinel System , 2021, medRxiv.

[52]  N. Normanno,et al.  SARS-CoV-2 complete genome sequencing from the Italian Campania region using a highly automated next generation sequencing system , 2021, Journal of translational medicine.

[53]  P. Hufnagl,et al.  Multiplexed detection of SARS-CoV-2 and other respiratory infections in high throughput by SARSeq , 2021, Nature communications.

[54]  O. Mor,et al.  Detection of SARS-CoV-2 variants by genomic analysis of wastewater samples in Israel , 2021, Science of The Total Environment.

[55]  O. Pansarasa,et al.  Detection of SARS-CoV-2 genome and whole transcriptome sequencing in frontal cortex of COVID-19 patients , 2021, Brain, Behavior, and Immunity.

[56]  J. Biegel,et al.  Increased viral variants in children and young adults with impaired humoral immunity and persistent SARS-CoV-2 infection: A consecutive case series , 2021, EBioMedicine.

[57]  K. Boukas,et al.  Diagnostic accuracy of loop-mediated isothermal amplification coupled to nanopore sequencing (LamPORE) for the detection of SARS-CoV-2 infection at scale in symptomatic and asymptomatic populations , 2021, Clinical Microbiology and Infection.

[58]  P. Maes,et al.  Organ-specific genome diversity of replication-competent SARS-CoV-2 , 2021, Nature Communications.

[59]  A. Maxmen Why US coronavirus tracking can’t keep up with concerning variants , 2021, Nature.

[60]  Nicola F. Müller,et al.  Characterizing the Countrywide Epidemic Spread of Influenza A(H1N1)pdm09 Virus in Kenya between 2009 and 2018 , 2021, medRxiv.

[61]  L. Steinmetz,et al.  Recommendations for accurate genotyping of SARS-CoV-2 using amplicon-based sequencing of clinical samples , 2021, Clinical Microbiology and Infection.

[62]  R. Boorstein,et al.  Targeted Hybridization Capture of SARS-CoV-2 and Metagenomics Enables Genetic Variant Discovery and Nasal Microbiome Insights , 2021, medRxiv.

[63]  M. Snyder,et al.  Long-read sequencing of SARS-CoV-2 reveals novel transcripts and a diverse complex transcriptome landscape , 2021, bioRxiv.

[64]  J. Pawlotsky,et al.  Viral genomic, metagenomic and human transcriptomic characterization and prediction of the clinical forms of COVID-19 , 2021, PLoS pathogens.

[65]  E. Boritz,et al.  High-Throughput, Single-Copy Sequencing Reveals SARS-CoV-2 Spike Variants Coincident with Mounting Humoral Immunity during Acute COVID-19 , 2021, bioRxiv.

[66]  T. Gibbons,et al.  Whole-genome Sequencing of SARS-CoV-2: Using Phylogeny and Structural Modeling to Contextualize Local Viral Evolution , 2021, Military medicine.

[67]  C. Rodríguez-Antolín,et al.  Evaluation of two automated low-cost RNA extraction protocols for SARS-CoV-2 detection , 2021, PloS one.

[68]  M. S. Khan,et al.  COVID-19: Diagnostics, Therapeutic Advances, and Vaccine Development , 2021, Current Clinical Microbiology Reports.

[69]  A. Khurshid,et al.  Importation of SARS‐CoV‐2 Variant B.1.1.7 in Pakistan , 2021, Journal of medical virology.

[70]  Salah Ayoub,et al.  Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy , 2021, iScience.

[71]  J. Qiu,et al.  The SARS-CoV-2 Transcriptome and the Dynamics of the S Gene Furin Cleavage Site in Primary Human Airway Epithelia , 2021, bioRxiv.

[72]  A. Sigal,et al.  Sixteen novel lineages of SARS-CoV-2 in South Africa , 2021, Nature Medicine.

[73]  V. Scaria,et al.  Insights from genomes and genetic epidemiology of SARS-CoV-2 isolates from the state of Andhra Pradesh , 2021, bioRxiv.

[74]  J. Doudna,et al.  Robotic RNA extraction for SARS-CoV-2 surveillance using saliva samples , 2021, medRxiv.

[75]  Md. Abdullah-Al-Kamran Khan,et al.  Transcriptome of nasopharyngeal samples from COVID-19 patients and a comparative analysis with other SARS-CoV-2 infection models reveal disparate host responses against SARS-CoV-2 , 2021, Journal of translational medicine.

[76]  P. Calistri,et al.  Multiple detection and spread of novel strains of the SARS-CoV-2 B.1.177 (B.1.177.75) lineage that test negative by a commercially available nucleocapsid gene real-time RT-PCR , 2021, Emerging Microbes and Infections.

[77]  J. D. Pearson,et al.  A multiplexed, next generation sequencing platform for high-throughput detection of SARS-CoV-2 , 2020, Nature Communications.

[78]  C. Agoti,et al.  Tracking the introduction and spread of SARS-CoV-2 in coastal Kenya , 2020, Nature Communications.

[79]  G. Rodger,et al.  Diagnosis of SARS-CoV-2 Infection with LamPORE, a High-Throughput Platform Combining Loop-Mediated Isothermal Amplification and Nanopore Sequencing , 2020, Journal of Clinical Microbiology.

[80]  Evelien M. Adriaenssens,et al.  CoronaHiT: high-throughput sequencing of SARS-CoV-2 genomes , 2021, Genome Medicine.

[81]  K. Lole,et al.  Phylogenetic classification of the whole-genome sequences of SARS-CoV-2 from India & evolutionary trends , 2021, The Indian journal of medical research.

[82]  C. Tripodo,et al.  Direct RNA Nanopore Sequencing of SARS-CoV-2 Extracted from Critical Material from Swabs , 2020, medRxiv.

[83]  R. Gibbs,et al.  Oligonucleotide Capture Sequencing of the SARS-CoV-2 Genome and Subgenomic Fragments from COVID-19 Individuals , 2020, bioRxiv.

[84]  Paolo Calistri,et al.  Genomic Epidemiology of the First Wave of SARS-CoV-2 in Italy , 2020, Viruses.

[85]  E. Holmes,et al.  SARS-CoV-2 replicates in respiratory ex vivo organ cultures of domestic ruminant species , 2020, Veterinary Microbiology.

[86]  M. Ohnishi,et al.  COVID-19 genome surveillance at international airport quarantine stations in Japan , 2020, Journal of travel medicine.

[87]  Michael T. Wolfinger,et al.  Genomic epidemiology of superspreading events in Austria reveals mutational dynamics and transmission properties of SARS-CoV-2 , 2020, Science Translational Medicine.

[88]  R. Colwell,et al.  Metagenomic Next-Generation Sequencing of Nasopharyngeal Specimens Collected from Confirmed and Suspect COVID-19 Patients , 2020, mBio.

[89]  Natacha S. Ogando,et al.  Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements , 2020, Nucleic acids research.

[90]  Matija Snuderl,et al.  Sequencing identifies multiple early introductions of SARS-CoV-2 to the New York City region , 2020, Genome research.

[91]  J. Waggoner,et al.  Metagenomic Sequencing To Detect Respiratory Viruses in Persons under Investigation for COVID-19 , 2020, Journal of Clinical Microbiology.

[92]  P. Kaleebu,et al.  Alternate primers for whole-genome SARS-CoV-2 sequencing , 2020, bioRxiv.

[93]  H. Yassine,et al.  Within-Host Diversity of SARS-CoV-2 in COVID-19 Patients With Variable Disease Severities , 2020, Frontiers in Cellular and Infection Microbiology.

[94]  P. Brož,et al.  Performance of Targeted Library Preparation Solutions for SARS-CoV-2 Whole Genome Analysis , 2020, Diagnostics.

[95]  Tsuyoshi Sekizuka,et al.  Disentangling primer interactions improves SARS-CoV-2 genome sequencing by multiplex tiling PCR , 2020, PloS one.

[96]  Andrew D Smith,et al.  Improvements to the ARTIC multiplex PCR method for SARS-CoV-2 genome sequencing using nanopore , 2020, bioRxiv.

[97]  K. To,et al.  COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing , 2020, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[98]  I. Sidorov,et al.  Coronavirus discovery by metagenomic sequencing: a tool for pandemic preparedness , 2020, Journal of Clinical Virology.

[99]  J. Shendure,et al.  Rapid cost-effective viral genome sequencing by V-seq , 2020, bioRxiv.

[100]  D. Turner,et al.  LamPORE: rapid, accurate and highly scalable molecular screening for SARS-CoV-2 infection, based on nanopore sequencing , 2020, medRxiv.

[101]  Sumit Sharma,et al.  High throughput detection and genetic epidemiology of SARS-CoV-2 using COVIDSeq next-generation sequencing , 2020, bioRxiv.

[102]  A. Tsakris,et al.  Transmission dynamics of SARS‐CoV‐2 within families with children in Greece: A study of 23 clusters , 2020, Journal of medical virology.

[103]  Lior Pachter,et al.  Swab-Seq: A high-throughput platform for massively scaled up SARS-CoV-2 testing , 2020, medRxiv.

[104]  F. Luciani,et al.  Analytical validity of nanopore sequencing for rapid SARS-CoV-2 genome analysis , 2020, Nature Communications.

[105]  D. Matthews,et al.  Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein , 2020, Genome Medicine.

[106]  William L. Hamilton,et al.  Rapid implementation of SARS-CoV-2 sequencing to investigate cases of health-care associated COVID-19: a prospective genomic surveillance study , 2020, The Lancet Infectious Diseases.

[107]  Francesco Comandatore,et al.  Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers , 2020, Science of The Total Environment.

[108]  Mikhail Prokopenko,et al.  Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome sequencing and agent-based modeling , 2020, Nature Medicine.

[109]  M. Ennaji,et al.  SARS-CoV-2 Genome Sequence from Morocco, Obtained Using Ion AmpliSeq Technology , 2020, Microbiology Resource Announcements.

[110]  B. Lina,et al.  Evaluation of NGS-based approaches for SARS-CoV-2 whole genome characterisation , 2020, bioRxiv.

[111]  Junhua Li,et al.  Multiple approaches for massively parallel sequencing of SARS-CoV-2 genomes directly from clinical samples , 2020, Genome Medicine.

[112]  Yan Li,et al.  Nanopore Targeted Sequencing for the Accurate and Comprehensive Detection of SARS‐CoV‐2 and Other Respiratory Viruses , 2020, Small.

[113]  Wasun Chantratita,et al.  Comparing library preparation methods for SARS-CoV-2 multiplex amplicon sequencing on the Illumina MiSeq platform , 2020, bioRxiv.

[114]  Richard Lessells,et al.  Whole Genome Sequencing of SARS-CoV-2: Adapting Illumina Protocols for Quick and Accurate Outbreak Investigation during a Pandemic , 2020, bioRxiv.

[115]  J. Derisi,et al.  Complete Genome Sequence of a Novel Coronavirus (SARS-CoV-2) Isolate from Bangladesh , 2020, Microbiology Resource Announcements.

[116]  J. Biegel,et al.  Pediatric COVID-19 in Southern California: clinical features and viral genetic diversity , 2020, medRxiv.

[117]  D. Depledge,et al.  Using Direct RNA Nanopore Sequencing to Deconvolute Viral Transcriptomes , 2020, Current protocols in microbiology.

[118]  J. Bonfield,et al.  COVID-19 ARTIC v3 Illumina library construction and sequencing protocol v3 , 2020, protocols.io.

[119]  N. Neff,et al.  Upper airway gene expression differentiates COVID-19 from other acute respiratory illnesses and reveals suppression of innate immune responses by SARS-CoV-2 , 2020, medRxiv.

[120]  Jalal K. Siddiqui,et al.  REMBRANDT: A high-throughput barcoded sequencing approach for COVID-19 screening , 2020, bioRxiv.

[121]  Betsi Kose,et al.  The origin of SARS-CoV-2 in Istanbul: Sequencing findings from the epicenter of the pandemic in Turkey , 2020, Northern clinics of Istanbul.

[122]  Daryl M. Gohl,et al.  A rapid, cost-effective tailed amplicon method for sequencing SARS-CoV-2 , 2020, bioRxiv.

[123]  I. Sam,et al.  Complete Genome Sequences of SARS-CoV-2 Strains Detected in Malaysia , 2020, Microbiology Resource Announcements.

[124]  Benjamin J. Polacco,et al.  A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug-Repurposing , 2020, Nature.

[125]  S. Sardi,et al.  Ion torrent-based nasopharyngeal swab metatranscriptomics in COVID-19 , 2020, Journal of Virological Methods.

[126]  Gintaras Deikus,et al.  Introductions and early spread of SARS-CoV-2 in the New York City area , 2020, Science.

[127]  J. Quick nCoV-2019 sequencing protocol v2 (GunIt) v2 , 2020 .

[128]  Aviv Regev,et al.  LAMP-Seq: Population-Scale COVID-19 Diagnostics Using Combinatorial Barcoding , 2020, bioRxiv.

[129]  Torsten Seemann,et al.  Isolation and rapid sharing of the 2019 novel coronavirus (SARS‐CoV‐2) from the first patient diagnosed with COVID‐19 in Australia , 2020, The Medical journal of Australia.

[130]  Nuno R. Faria,et al.  A Genomic Survey of SARS-CoV-2 Reveals Multiple Introductions into Northern California without a Predominant Lineage , 2020, medRxiv.

[131]  Bo Zhang,et al.  High sensitivity detection of SARS-CoV-2 using multiplex PCR and a multiplex-PCR-based metagenomic method , 2020 .

[132]  Hyeshik Chang,et al.  The Architecture of SARS-CoV-2 Transcriptome , 2020, Cell.

[133]  Nichollas E. Scott,et al.  Direct RNA sequencing and early evolution of SARS-CoV-2 , 2020, bioRxiv.

[134]  Lei Liu,et al.  Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019 , 2020, medRxiv.

[135]  T. Phan,et al.  Genetic diversity and evolution of SARS-CoV-2 , 2020, Infection, Genetics and Evolution.

[136]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[137]  Tulio de Oliveira,et al.  Genomic and Epidemiological Surveillance of Zika Virus in the Amazon Region. , 2020, Cell reports.

[138]  G. Gao,et al.  A Novel Coronavirus from Patients with Pneumonia in China, 2019 , 2020, The New England journal of medicine.

[139]  J. Quick,et al.  nCoV-2019 sequencing protocol v1 , 2020 .

[140]  J. E. Muñoz-Medina,et al.  Metagenomic sequencing with spiked primer enrichment for viral diagnostics and genomic surveillance , 2020, Nature Microbiology.

[141]  Nikki E. Freed,et al.  Rapid and inexpensive whole-genome sequencing of SARS-CoV-2 using 1200 bp tiled amplicons and Oxford Nanopore Rapid Barcoding , 2020, bioRxiv.

[142]  E. Holmes,et al.  An emergent clade of SARS-CoV-2 linked to returned travellers from Iran , 2020, bioRxiv.

[143]  M. Shi,et al.  Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients , 2020, Emerging microbes & infections.

[144]  Bo Zhong,et al.  RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak , 2020, Emerging microbes & infections.

[145]  D. Nigam,et al.  Genome-Wide Variation in Potyviruses , 2019, Front. Plant Sci..

[146]  Qingmin Wu,et al.  Transcriptional analysis reveals the relativity of acid tolerance and antimicrobial peptide resistance of Salmonella. , 2019, Microbial pathogenesis.

[147]  O. Pybus,et al.  Metagenomic Next-Generation Sequencing of the 2014 Ebola Virus Disease Outbreak in the Democratic Republic of the Congo , 2019, Journal of Clinical Microbiology.

[148]  M. Soares,et al.  Estimating HIV-1 Genetic Diversity in Brazil Through Next-Generation Sequencing , 2019, Front. Microbiol..

[149]  M. Fallah,et al.  The genesis of the Ebola virus outbreak in west Africa. , 2019, The Lancet. Infectious diseases.

[150]  C. Chiu,et al.  Clinical metagenomics , 2019, Nature Reviews Genetics.

[151]  Wenwei Zhang,et al.  Comparative performance of the BGI and Illumina sequencing technology for single-cell RNA-sequencing , 2019, bioRxiv.

[152]  S. Kenmoe,et al.  Molecular characterization of influenza A(H1N1)pdm09 in Cameroon during the 2014-2016 influenza seasons , 2019, PloS one.

[153]  R. Tesh,et al.  Inter- and intra-lineage genetic diversity of wild-type Zika viruses reveals both common and distinctive nucleotide variants and clusters of genomic diversity , 2019, Emerging microbes & infections.

[154]  A. Glatman-Freedman,et al.  A method to identify respiratory virus infections in clinical samples using next-generation sequencing , 2019, Scientific Reports.

[155]  C. Desnues,et al.  Hybrid Capture-Based Next Generation Sequencing and Its Application to Human Infectious Diseases , 2018, Front. Microbiol..

[156]  M. Beyer,et al.  Systematic evaluation of error rates and causes in short samples in next-generation sequencing , 2018, Scientific Reports.

[157]  P. Lemey,et al.  Whole genome analysis of local Kenyan and global sequences unravels the epidemiological and molecular evolutionary dynamics of RSV genotype ON1 strains , 2018, bioRxiv.

[158]  Rachel Lowe,et al.  The Zika Virus Epidemic in Brazil: From Discovery to Future Implications , 2018, International journal of environmental research and public health.

[159]  Ning Wang,et al.  Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus , 2017, PLoS pathogens.

[160]  Hayden C. Metsky,et al.  Genomic epidemiology reveals multiple introductions of Zika virus into the United States , 2017, Nature.

[161]  Ping Xu,et al.  Small RNA Profiling by Next-Generation Sequencing Using High-Definition Adapters. , 2017, Methods in molecular biology.

[162]  Judith Breuer,et al.  Clinical and biological insights from viral genome sequencing , 2017, Nature Reviews Microbiology.

[163]  Trevor Bedford,et al.  Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples , 2017, Nature Protocols.

[164]  P. Kellam,et al.  Transmission patterns and evolution of respiratory syncytial virus in a community outbreak identified by genomic analysis , 2017, Virus evolution.

[165]  Hugh E. Olsen,et al.  The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community , 2016, Genome Biology.

[166]  N. Loman,et al.  Mobile real-time surveillance of Zika virus in Brazil , 2016, Genome Medicine.

[167]  Christl A. Donnelly,et al.  Countering the Zika epidemic in Latin America , 2016, Science.

[168]  Farren J. Isaacs,et al.  Erratum to: The real cost of sequencing: scaling computation to keep pace with data generation , 2016, Genome Biology.

[169]  Ben Hu,et al.  Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft , 2016, Virologica Sinica.

[170]  Paul Kellam,et al.  Rapid outbreak sequencing of Ebola virus in Sierra Leone identifies transmission chains linked to sporadic cases , 2016, Virus evolution.

[171]  F. Antoneli,et al.  Estimation of genetic diversity in viral populations from next generation sequencing data with extremely deep coverage , 2014, Algorithms for Molecular Biology.

[172]  David A. Eccles,et al.  MinION Analysis and Reference Consortium: Phase 1 data release and analysis , 2015, F1000Research.

[173]  C. Hendrickson,et al.  Overview of Target Enrichment Strategies , 2015, Current protocols in molecular biology.

[174]  Pardis C Sabeti,et al.  Distinct lineages of Ebola virus in Guinea during the 2014 West African epidemic , 2015, Nature.

[175]  Mick Watson,et al.  Successful test launch for nanopore sequencing , 2015, Nature Methods.

[176]  Fabrizio D'Amico,et al.  Ebola Virus Disease 2013-2014 Outbreak in West Africa: An Analysis of the Epidemic Spread and Response , 2015, International journal of microbiology.

[177]  Pardis C. Sabeti,et al.  Data sharing: Make outbreak research open access , 2015, Nature.

[178]  M. Siqueira,et al.  Molecular characterization of influenza viruses collected from young children in Uberlandia, Brazil - from 2001 to 2010 , 2015, BMC Infectious Diseases.

[179]  Marilyn M. Li,et al.  Somatic Diseases (Cancer): Amplification-Based Next-Generation Sequencing , 2015 .

[180]  David M. Pereira,et al.  Chapter 2.1.2 – “Omics” Technologies: Promises and Benefits for Molecular Medicine , 2015 .

[181]  Rachel S. G. Sealfon,et al.  Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak , 2014, Science.

[182]  V. Egorov,et al.  Molecular mechanisms enhancing the proteome of influenza A viruses: an overview of recently discovered proteins. , 2014, Virus research.

[183]  C. Hsiao,et al.  The SARS coronavirus nucleocapsid protein – Forms and functions , 2014, Antiviral Research.

[184]  Vincent Montoya,et al.  Metagenomics for pathogen detection in public health , 2013, Genome Medicine.

[185]  D. Cummings,et al.  Hospital outbreak of Middle East respiratory syndrome coronavirus. , 2013, The New England journal of medicine.

[186]  Julien Riou,et al.  Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk , 2013, The Lancet.

[187]  Richard J. Roberts,et al.  The advantages of SMRT sequencing , 2013, Genome Biology.

[188]  A. Osterhaus,et al.  Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. , 2012, The New England journal of medicine.

[189]  T. Stockwell,et al.  Automated degenerate PCR primer design for high-throughput sequencing improves efficiency of viral sequencing , 2012, Virology Journal.

[190]  Lin Liu,et al.  Comparison of Next-Generation Sequencing Systems , 2012, Journal of biomedicine & biotechnology.

[191]  Qing Yu,et al.  PriSM: a primer selection and matching tool for amplification and sequencing of viral genomes , 2011, Bioinform..

[192]  Steve Miller,et al.  A Metagenomic Analysis of Pandemic Influenza A (2009 H1N1) Infection in Patients from North America , 2010, PloS one.

[193]  A. Kasarskis,et al.  A window into third-generation sequencing. , 2010, Human molecular genetics.

[194]  Masato Tashiro,et al.  Characterization of Quasispecies of Pandemic 2009 Influenza A Virus (A/H1N1/2009) by De Novo Sequencing Using a Next-Generation DNA Sequencer , 2010, PloS one.

[195]  A. Gumel,et al.  Influenza epidemiology—past, present, and future , 2010, Critical care medicine.

[196]  Emily H Turner,et al.  Target-enrichment strategies for next-generation sequencing , 2010, Nature Methods.

[197]  G. Porreca Genome sequencing on nanoballs , 2010, Nature Biotechnology.

[198]  Robert B. Hartlage,et al.  This PDF file includes: Materials and Methods , 2009 .

[199]  P. Barboza,et al.  Epidemiology of fatal cases associated with pandemic H1N1 influenza 2009. , 2009, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[200]  Gavin J. D. Smith,et al.  Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic , 2009, Nature.

[201]  J. Kawai,et al.  Direct Metagenomic Detection of Viral Pathogens in Nasal and Fecal Specimens Using an Unbiased High-Throughput Sequencing Approach , 2009, PloS one.

[202]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[203]  S. Salzberg,et al.  Genome Analysis Linking Recent European and African Influenza (H5N1) Viruses , 2007, Emerging infectious diseases.

[204]  Eugene Y Chan,et al.  Advances in sequencing technology. , 2005, Mutation research.

[205]  J. Peiris,et al.  Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003 , 2003, The Lancet.

[206]  J. A. Comer,et al.  A novel coronavirus associated with severe acute respiratory syndrome. , 2003, The New England journal of medicine.

[207]  Yeoh Oon Swee,et al.  Influenza Epidemic in Singapore Children , 1957 .

[208]  D. Forsyth,et al.  Asiatic influenza in the Middle East; an outbreak in a small community. , 1957, Lancet.

[209]  T. Francis,et al.  THE SUSCEPTIBILITY OF SWINE TO THE VIRUS OF HUMAN INFLUENZA , 1936, The Journal of experimental medicine.