Cracking node method for dynamic fracture with finite elements

A new method for modeling discrete cracks based on the extended finite element method is described. In the method, the growth of the actual crack is tracked and approximated with contiguous discrete crack segments that lie on finite element nodes and span only two adjacent elements. The method can deal with complicated fracture patterns because it needs no explicit representation of the topology of the actual crack path. A set of effective rules for injection of crack segments is presented so that fracture behavior beginning from arbitrary crack nucleations to macroscopic crack propagation is seamlessly modeled. The effectiveness of the method is demonstrated with several dynamic fracture problems that involve complicated crack patterns such as fragmentation and crack branching. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  J. F. Kalthoff Modes of dynamic shear failure in solids , 2000 .

[2]  T. Rabczuk,et al.  Discontinuous modelling of shear bands using adaptive meshfree methods , 2008 .

[3]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[4]  T. Belytschko,et al.  A uniform strain hexahedron and quadrilateral with orthogonal hourglass control , 1981 .

[5]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[6]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[7]  Nicolas Moës,et al.  Mass lumping strategies for X‐FEM explicit dynamics: Application to crack propagation , 2008 .

[8]  Carlos Armando Duarte,et al.  A high‐order generalized FEM for through‐the‐thickness branched cracks , 2007 .

[9]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[10]  Horacio Dante Espinosa,et al.  Grain level analysis of crack initiation and propagation in brittle materials , 2001 .

[11]  Ted Belytschko,et al.  Analysis of fracture in thin shells by overlapping paired elements , 2006 .

[12]  T. Belytschko,et al.  Vector level sets for description of propagating cracks in finite elements , 2003 .

[13]  T. Belytschko,et al.  A method for growing multiple cracks without remeshing and its application to fatigue crack growth , 2004 .

[14]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[15]  T. Belytschko,et al.  Suppression of spurious intermediate frequency modes in under‐integrated elements by combined stiffness/viscous stabilization , 2005 .

[16]  Julien Réthoré,et al.  Efficient explicit time stepping for the eXtended Finite Element Method (X‐FEM) , 2006 .

[17]  Y. K. Cheung,et al.  Free vibration and static analysis of general plate by spline finite strip , 1988 .

[18]  J. Fish The s-version of the finite element method , 1992 .

[19]  Ted Belytschko,et al.  A method for dynamic crack and shear band propagation with phantom nodes , 2006 .

[20]  Paul A. Wawrzynek,et al.  Arbitrary crack representation using solid modeling , 1993, Engineering with Computers.

[21]  Gross,et al.  Energy dissipation in dynamic fracture. , 1996, Physical review letters.

[22]  L. B. Freund,et al.  Fracture Initiation Due to Asymmetric Impact Loading of an Edge Cracked Plate , 1990 .

[23]  Julien Réthoré,et al.  An energy‐conserving scheme for dynamic crack growth using the eXtended finite element method , 2005 .

[24]  T. Belytschko,et al.  A comparative study on finite element methods for dynamic fracture , 2008 .

[25]  J. Fineberg,et al.  Microbranching instability and the dynamic fracture of brittle materials. , 1996, Physical review. B, Condensed matter.

[26]  René de Borst,et al.  Mesh-independent discrete numerical representations of cohesive-zone models , 2006 .

[27]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[28]  Ted Belytschko,et al.  Simulations of instability in dynamic fracture by the cracking particles method , 2009 .

[29]  T. Belytschko,et al.  A finite‐strain quadrilateral shell element based on discrete Kirchhoff–Love constraints , 2005 .

[30]  Jeong-Hoon Song,et al.  A new method for growing multiple cracks without remeshing and its application to fatigue crack growth , 2005 .

[31]  T. Belytschko,et al.  A finite element with embedded localization zones , 1988 .

[32]  E. Dvorkin,et al.  Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions , 1990 .

[33]  T. Belytschko,et al.  A simplified mesh‐free method for shear bands with cohesive surfaces , 2007 .

[34]  Jay Fineberg,et al.  Confirming the continuum theory of dynamic brittle fracture for fast cracks , 1999, Nature.

[35]  Ted Belytschko,et al.  A vector level set method and new discontinuity approximations for crack growth by EFG , 2002 .

[36]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[37]  Albert S. Kobayashi,et al.  Mechanics of crack curving and branching — a dynamic fracture analysis , 1985 .

[38]  Milan Jirásek,et al.  Comparative study on finite elements with embedded discontinuities , 2000 .

[39]  Anthony R. Ingraffea,et al.  Modeling mixed-mode dynamic crack propagation nsing finite elements: Theory and applications , 1988 .

[40]  A. Needleman,et al.  A cohesive segments method for the simulation of crack growth , 2003 .

[41]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[42]  T. Belytschko,et al.  Analysis of three‐dimensional crack initiation and propagation using the extended finite element method , 2005 .

[43]  T. Belytschko,et al.  DYNAMIC FRACTURE USING ELEMENT-FREE GALERKIN METHODS , 1996 .

[44]  T. Belytschko,et al.  Efficient large scale non‐linear transient analysis by finite elements , 1976 .

[45]  Ted Belytschko,et al.  Dynamic Fracture of Shells Subjected to Impulsive Loads , 2009 .

[46]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[47]  Pritam Ganguly,et al.  Spatial convergence of crack nucleation using a cohesive finite‐element model on a pinwheel‐based mesh , 2006 .

[48]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[49]  T. Belytschko,et al.  Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment , 2003 .

[50]  J. Molinari,et al.  Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency , 2004 .

[51]  K. Ravi-Chandar,et al.  Dynamic Fracture of Nominally Brittle Materials , 1998 .

[52]  F. Armero,et al.  An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids , 1996 .

[53]  J. C. Simo,et al.  An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids , 1993 .

[54]  Benoit Prabel,et al.  Level set X‐FEM non‐matching meshes: application to dynamic crack propagation in elastic–plastic media , 2007 .

[55]  Stephen A. Vavasis,et al.  Time continuity in cohesive finite element modeling , 2003 .

[56]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[57]  Ted Belytschko,et al.  Modelling crack growth by level sets in the extended finite element method , 2001 .

[58]  R. Fan,et al.  The rs-method for material failure simulations , 2008 .