Deep Learning Models
暂无分享,去创建一个
[1] Tong Zhang,et al. Solving large scale linear prediction problems using stochastic gradient descent algorithms , 2004, ICML.
[2] Claudio Moraga,et al. The Influence of the Sigmoid Function Parameters on the Speed of Backpropagation Learning , 1995, IWANN.
[3] Yoshua Bengio,et al. Gradient-based learning applied to document recognition , 1998, Proc. IEEE.
[4] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[5] N. Ahmed,et al. Discrete Cosine Transform , 1996 .
[6] Nitish Srivastava,et al. Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.
[7] Brian Dalessandro. Bring the Noise: Embracing Randomness Is the Key to Scaling Up Machine Learning Algorithms , 2013, Big Data.
[8] Yann LeCun,et al. Regularization of Neural Networks using DropConnect , 2013, ICML.
[9] Shan Suthaharan. No-reference visually significant blocking artifact metric for natural scene images , 2009, Signal Process..
[10] B. L. Kalman,et al. Why tanh: choosing a sigmoidal function , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.
[11] Klaus-Robert Müller,et al. Kernel Analysis of Deep Networks , 2011, J. Mach. Learn. Res..
[12] Prasoon Goyal,et al. Local Deep Kernel Learning for Efficient Non-linear SVM Prediction , 2013, ICML.