The FA Core Complex Contains a Homo-dimeric Catalytic Module for the Symmetric Mono-ubiquitination of FANCI-FANCD2

[1]  Paolo Swuec,et al.  Mechanism of Ubiquitination and Deubiquitination in the Fanconi Anemia Pathway. , 2017, Molecular cell.

[2]  M. Cohn,et al.  The FANCD2–FANCI complex is recruited to DNA interstrand crosslinks before monoubiquitination of FANCD2 , 2016, Nature Communications.

[3]  A. D’Andrea,et al.  The Fanconi anaemia pathway: new players and new functions , 2016, Nature Reviews Molecular Cell Biology.

[4]  Hiroyuki Araki,et al.  Elucidating the DDK‐dependent step in replication initiation , 2016, The EMBO journal.

[5]  J. Diffley,et al.  Phosphopeptide binding by Sld3 links Dbf4‐dependent kinase to MCM replicative helicase activation , 2016, The EMBO journal.

[6]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[7]  Y. Shirakihara,et al.  The quaternary structure of the eukaryotic DNA replication proteins Sld7 and Sld3. , 2015, Acta crystallographica. Section D, Biological crystallography.

[8]  B. Tye,et al.  Structure of the eukaryotic MCM complex at 3.8 Å , 2015, Nature.

[9]  A. Smogorzewska,et al.  SnapShot: Fanconi Anemia and Associated Proteins , 2015, Cell.

[10]  A. Engelman,et al.  Retroviral Integrase Structure and DNA Recombination Mechanism , 2014, Microbiology spectrum.

[11]  M. Botchan,et al.  DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome , 2014, eLife.

[12]  Junjie Chen,et al.  Modularized functions of the Fanconi anemia core complex. , 2014, Cell Reports.

[13]  L. Passmore,et al.  The Genetic and Biochemical Basis of FANCD2 Monoubiquitination , 2014, Molecular cell.

[14]  H. Walden,et al.  The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder. , 2014, Annual review of biophysics.

[15]  H. Walden,et al.  Structure of the Human FANCL RING-Ube2T Complex Reveals Determinants of Cognate E3-E2 Selection , 2014, Structure.

[16]  A. D’Andrea,et al.  The Carboxyl Terminus of FANCE Recruits FANCD2 to the Fanconi Anemia (FA) E3 Ligase Complex to Promote the FA DNA Repair Pathway* , 2014, The Journal of Biological Chemistry.

[17]  Ruedi Aebersold,et al.  Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline , 2013, Nature Protocols.

[18]  M. Beck,et al.  Integrated Structural Analysis of the Human Nuclear Pore Complex Scaffold , 2013, Cell.

[19]  S. West,et al.  Architecture and DNA Recognition Elements of the Fanconi Anemia FANCM-FAAP24 Complex , 2013, Structure.

[20]  E. Ostrander,et al.  Massively parallel sequencing, aCGH, and RNA-Seq technologies provide a comprehensive molecular diagnosis of Fanconi anemia. , 2013, Blood.

[21]  D. Agard,et al.  Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM , 2013, Nature Methods.

[22]  Molly C. Kottemann,et al.  Fanconi anaemia and the repair of Watson and Crick DNA crosslinks , 2013, Nature.

[23]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[24]  H. Kimura,et al.  Histone chaperone activity of Fanconi anemia proteins, FANCD2 and FANCI, is required for DNA crosslink repair , 2012, The EMBO journal.

[25]  H. Walden,et al.  Structural Analysis of Human FANCL, the E3 Ligase in the Fanconi Anemia Pathway* , 2011, The Journal of Biological Chemistry.

[26]  S. Elledge,et al.  Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway , 2011, Science.

[27]  Stephen C. West,et al.  DNA interstrand crosslink repair and cancer , 2011, Nature Reviews Cancer.

[28]  J. Pruneda,et al.  Ubiquitin in motion: structural studies of the ubiquitin-conjugating enzyme∼ubiquitin conjugate. , 2011, Biochemistry.

[29]  C. W. Liew,et al.  RING domain dimerization is essential for RNF4 function. , 2010, The Biochemical journal.

[30]  Weidong Wang,et al.  A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. , 2010, Molecular cell.

[31]  S. Elledge,et al.  The Fanconi Anemia Pathway Promotes Replication-Dependent DNA Interstrand Cross-Link Repair , 2009, Science.

[32]  M. Babu,et al.  Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. , 2008, Molecular cell.

[33]  B. Stillman,et al.  The architecture of the DNA replication origin recognition complex in Saccharomyces cerevisiae , 2008, Proceedings of the National Academy of Sciences.

[34]  A. Gurtan,et al.  Cell cycle-dependent chromatin loading of the Fanconi anemia core complex by FANCM/FAAP24. , 2008, Blood.

[35]  E. Spiteri,et al.  FANCI is a second monoubiquitinated member of the Fanconi anemia pathway , 2007, Nature Structural &Molecular Biology.

[36]  S. Elledge,et al.  Identification of the FANCI Protein, a Monoubiquitinated FANCD2 Paralog Required for DNA Repair , 2007, Cell.

[37]  L. Pellegrini,et al.  Insights into Fanconi Anaemia from the structure of human FANCE , 2007, Nucleic acids research.

[38]  S. West,et al.  Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. , 2007, Molecular cell.

[39]  Anindya Dutta,et al.  UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. , 2006, Molecular cell.

[40]  Susan M. Gordon,et al.  FANCC, FANCE, and FANCD2 Form a Ternary Complex Essential to the Integrity of the Fanconi Anemia DNA Damage Response Pathway* , 2005, Journal of Biological Chemistry.

[41]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[42]  C. Bishop,et al.  A novel ubiquitin ligase is deficient in Fanconi anemia , 2003, Nature Genetics.

[43]  N. Grigorieff,et al.  Accurate determination of local defocus and specimen tilt in electron microscopy. , 2003, Journal of structural biology.

[44]  Hans Joenje,et al.  FANCE: the link between Fanconi anaemia complex assembly and activity , 2002, The EMBO journal.

[45]  Rachel E. Klevit,et al.  Structure of a BRCA1–BARD1 heterodimeric RING–RING complex , 2001, Nature Structural Biology.

[46]  S. Ganesan,et al.  Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. , 2001, Molecular cell.

[47]  R. Moses,et al.  Positional cloning of a novel Fanconi anemia gene, FANCD2. , 2001, Molecular cell.

[48]  S. Fang,et al.  RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[49]  A. Klug,et al.  Structure of the nucleosome core particle at 7 Å resolution , 1984, Nature.

[50]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1974, Nature.

[51]  H. Walden,et al.  University of Dundee Structure of the Human FANCL RING-Ube 2 T Complex Reveals Determinants of Cognate E 3E 2 Selection , 2017 .

[52]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.