QCDNUM: Fast QCD evolution and convolution

Abstract The qcdnum program numerically solves the evolution equations for parton densities and fragmentation functions in perturbative QCD. Un-polarised parton densities can be evolved up to next-to-next-to-leading order in powers of the strong coupling constant, while polarised densities or fragmentation functions can be evolved up to next-to-leading order. Other types of evolution can be accessed by feeding alternative sets of evolution kernels into the program. A versatile convolution engine provides tools to compute parton luminosities, cross-sections in hadron–hadron scattering, and deep inelastic structure functions in the zero-mass scheme or in generalised mass schemes. Input to these calculations are either the qcdnum evolved densities, or those read in from an external parton density repository. Included in the software distribution are packages to calculate zero-mass structure functions in un-polarised deep inelastic scattering, and heavy flavour contributions to these structure functions in the fixed flavour number scheme. Program summary Program title: QCDNUM version: 17.00 Catalogue identifier: AEHV_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEHV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Public Licence No. of lines in distributed program, including test data, etc.: 45 736 No. of bytes in distributed program, including test data, etc.: 911 569 Distribution format: tar.gz Programming language: Fortran-77 Computer: All Operating system: All RAM: Typically 3 Mbytes Classification: 11.5 Nature of problem: Evolution of the strong coupling constant and parton densities, up to next-to-next-to-leading order in perturbative QCD. Computation of observable quantities by Mellin convolution of the evolved densities with partonic cross-sections. Solution method: Parametrisation of the parton densities as linear or quadratic splines on a discrete grid, and evolution of the spline coefficients by solving (coupled) triangular matrix equations with a forward substitution algorithm. Fast computation of convolution integrals as weighted sums of spline coefficients, with weights derived from user-given convolution kernels. Restrictions: Accuracy and speed are determined by the density of the evolution grid. Running time: Less than 10 ms on a 2 GHz Intel Core 2 Duo processor to evolve the gluon density and 12 quark densities at next-to-next-to-leading order over a large kinematic range.

[1]  W. Neerven,et al.  Order αs2 correction to the structure function F3(x, Q2) in deep inelastic neutrino-hadron scattering , 1992 .

[2]  A. Vogt,et al.  NNLO evolution of deep-inelastic structure functions: the non-singlet case , 1999 .

[3]  CTEQ6 parton distributions with heavy quark mass effects , 2003, hep-ph/0307022.

[4]  R. Petronzio,et al.  Evolution of parton densities beyond leading order. The non-singlet case , 1980 .

[5]  Alessandro Cafarella,et al.  Direct solution of renormalization group equations of QCD in x-space: NLO implementations at leading twist , 2004, Comput. Phys. Commun..

[6]  Strong coupling constant with flavor thresholds at four loops in the MS scheme , 1997, hep-ph/9706430.

[7]  A. Vogt,et al.  The longitudinal structure function at the third order , 2004, hep-ph/0411112.

[8]  U. Katz Deep Inelastic Positron-Proton Scattering in the High-Momentum-Transfer Regime of Hera , 2000 .

[9]  A. Vogt,et al.  Efficient evolution of unpolarized and polarized parton distributions with QCD-Pegasus , 2004, Comput. Phys. Commun..

[10]  R. Petronzio,et al.  Singlet Parton Densities Beyond Leading Order , 1980 .

[11]  Juan Rojo,et al.  A Higher Order Perturbative Parton Evolution Toolkit (HOPPET) , 2008, Comput. Phys. Commun..

[12]  W. L. van Neerven,et al.  Contribution of the second order gluonic Wilson coefficient to the deep inelastic structure function , 1991 .

[13]  J. Smith,et al.  Charm electroproduction viewed in the variable-flavour number scheme versus fixed-order perturbation theory , 1996, hep-ph/9612398.

[14]  Michele Arneodo,et al.  Quark and gluon distributions and αs from nucleon structure functions at low x , 1993 .

[15]  P. Nason,et al.  SCALING VIOLATION IN E+E- FRAGMENTATION FUNCTIONS: QCD EVOLUTION, HADRONIZATION AND HEAVY QUARK MASS EFFECTS NUCL. PHYS. B 421 (1994) 473 , 1996 .

[16]  W. L. van Neerven,et al.  The calculation of the two-loop spin splitting functions $P_{ij}^{(1)}(x)$ , 1995, hep-ph/9506451.

[17]  P. Stephens,et al.  Proceedings of the workshop: HERA and the LHC workshop series on the implications of HERA for LHC physics , 2009, 0903.3861.

[18]  R. Thorne Variable-flavor number scheme for next-to-next-to-leading order , 2006 .

[19]  G. Parisi,et al.  Asymptotic Freedom in Parton Language , 1977 .

[20]  W. L. van Neerven,et al.  Order α2S contributions to the deep inelastic Wilson coefficient , 1991 .

[21]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[22]  A. Cooper-Sarkar,et al.  STRUCTURE FUNCTIONS OF THE NUCLEON AND THEIR INTERPRETATION , 1997, hep-ph/9712301.

[23]  R. Petronzio,et al.  Lepton-hadron processes beyond leading order in quantum chromodynamics , 1982 .

[24]  O. Sampayo,et al.  Next-to-leading order analysis of the deep inelastic R = σL/σT , 1991 .

[25]  F. Chlebana,et al.  Extraction of the gluon density of the proton at x , 1995 .

[26]  R. Kress Numerical Analysis , 1998 .

[27]  A. Vladimirov,et al.  The gell-mann-low function of QCD in the three-loop approximation , 1980 .

[28]  J. Smith,et al.  Complete O(αS) corrections to heavy-flavour structure functions in electroproduction , 1993 .

[29]  W. Vogelsang The spin-dependent two-loop splitting functions , 1996, hep-ph/9603366.

[30]  Bruce J. West,et al.  ZEUS next-to-leading-order QCD analysis of data on deep inelastic scattering , 2003 .

[31]  P. Nason,et al.  Scaling violation in e+e− fragmentation functions: QCD evolution, hadronization and heavy quark mass effects , 1994 .

[32]  M. Virchaux,et al.  A measurement of αs and of higher twists from a QCD analysis of high statistics F2 data on hydrogen and deuterium targets , 1992 .

[33]  R. Feynman Structure of the proton. , 1974, Science.

[34]  A. Sherstnev,et al.  Les Houches 'Physics at Tev Colliders 2003' QCD/SM Working Group : Summary Report , 2004 .

[35]  M. Botje A QCD analysis of HERA and fixed target structure function data , 1999, hep-ph/9912439.

[36]  Numerical solution of $Q^2$ evolution equations in a brute-force method , 1995, hep-ph/9508246.

[37]  A. Vogt,et al.  The Three-loop splitting functions in QCD: The Singlet case , 2004, hep-ph/0404111.

[38]  L. Lipatov Parton model and perturbation theory , 1974 .

[39]  E. Eichten,et al.  Super Collider Physics , 1984 .

[40]  李幼升,et al.  Ph , 1989 .

[41]  J. Breitweg ZEUS results on the measurement and phenomenology of F(2) at low x and low Q**2 , 1999 .

[42]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[43]  Marco Guzzi,et al.  Precision studies of the NNLO DGLAP evolution at the LHC with Candia , 2008, Comput. Phys. Commun..

[44]  Wu-Ki Tung,et al.  Open heavy flavour production: conceptual framework and implementation issues , 2001 .