The Nyström method for functional quantization with an application to the fractional Brownian motion

In this article, the so-called "Nystrom method" is tested to compute optimal quantizers of Gaussian processes. In particular, we derive the optimal quantization of the fractional Brownian motion by approximating the first terms of its Karhunen-Loeve decomposition. A numerical test of the "functional stratification" variance reduction algorithm is performed with the fractional Brownian motion.

[1]  Gilles Pagès,et al.  Optimal quadratic quantization for numerics: the Gaussian case , 2003, Monte Carlo Methods Appl..

[2]  Gillis Pagés,et al.  A space quantization method for numerical integration , 1998 .

[3]  Gilles Pagès,et al.  Functional quantization of Gaussian processes , 2002 .

[4]  Harald Luschgy,et al.  Sharp asymptotics of the functional quantization problem for Gaussian processes , 2004 .

[5]  B. Øksendal,et al.  An introduction to white–noise theory and Malliavin calculus for fractional Brownian motion , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  Harald Luschgy,et al.  Expansions for Gaussian Processes and Parseval Frames , 2009, 0902.2563.

[7]  Harald Luschgy,et al.  High-resolution product quantization for Gaussian processes under sup-norm distortion , 2007 .

[8]  Kacha Dzhaparidze,et al.  A series expansion of fractional Brownian motion , 2002 .

[9]  G. Pagès,et al.  A QUANTIZATION TREE METHOD FOR PRICING AND HEDGING MULTIDIMENSIONAL AMERICAN OPTIONS , 2005 .

[10]  P. Etoré,et al.  Adaptive Optimal Allocation in Stratified Sampling Methods , 2007, 0711.4514.

[11]  Han Guo-qiang,et al.  Asymptotic error expansion for the Nystro¨m method for a nonlinear Volterra-Fredholm integral equation , 1995 .

[12]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[13]  Andrew T. A. Wood,et al.  Simulation of Multifractional Brownian Motion , 1998, COMPSTAT.

[14]  R. Elliott,et al.  A General Fractional White Noise Theory And Applications To Finance , 2003 .

[15]  J. H. Zanten,et al.  Optimality of an explicit series expansion of the fractional Brownian sheet , 2005 .

[16]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[17]  A. Wood,et al.  Simulation of Stationary Gaussian Processes in [0, 1] d , 1994 .

[18]  L. Delves,et al.  Computational methods for integral equations: Frontmatter , 1985 .

[19]  Gilles Pages,et al.  Convergence of Multi-Dimensional Quantized SDE’s , 2008, 0801.0726.

[20]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[21]  Benedikt Wilbertz,et al.  Construction of optimal quantizers for Gaussian measures on Banach spaces , 2008 .

[22]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .