(CH3NH3)2Pb(SCN)2I2: a more stable structural motif for hybrid halide photovoltaics?

Hybrid halide perovskites have recently emerged as a highly efficient class of light absorbers; however, there are increasing concerns over their long-term stability. Recently, incorporation of SCN(-) has been suggested as a novel route to improving stability without negatively impacting performance. Intriguingly, despite crystallizing in a 2D layered structure, (CH3NH3)2Pb(SCN)2I2 (MAPSI) possesses an ideal band gap of 1.53 eV, close to that of the 3D connected champion hybrid perovskite absorber, CH3NH3PbI3 (MAPI). Here, we identify, using hybrid density functional theory, the origin of the smaller than expected band gap of MAPSI through a detailed comparison with the electronic structure of MAPI. Furthermore, assessment of the MAPSI structure reveals that it is thermodynamically stable with respect to phase separation, a likely source of the increased stability reported in experiment.

[1]  Guglielmo Lanzani,et al.  Excitons versus free charges in organo-lead tri-halide perovskites , 2014, Nature Communications.

[2]  I. Parkin,et al.  Scalable route to CH3NH3PbI3 perovskite thin films by aerosol assisted chemical vapour deposition , 2015 .

[3]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[4]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[5]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[6]  Aron Walsh,et al.  Assessment of polyanion (BF4− and PF6−) substitutions in hybrid halide perovskites , 2015 .

[7]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[8]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[9]  Michael Grätzel,et al.  First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications , 2013 .

[10]  Guangda Niu,et al.  Review of recent progress in chemical stability of perovskite solar cells , 2015 .

[11]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[12]  Yani Chen,et al.  Efficient and reproducible CH3NH3PbI(3-x)(SCN)x perovskite based planar solar cells. , 2015, Chemical communications.

[13]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[14]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[15]  Alan D. F. Dunbar,et al.  Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition , 2014 .

[16]  Shyamtanu Chattoraj,et al.  Pseudohalide (SCN(-))-Doped MAPbI3 Perovskites: A Few Surprises. , 2015, The journal of physical chemistry letters.

[17]  Yong Qiu,et al.  Study on the stability of CH3NH3PbI3films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells , 2014 .

[18]  Nam-Gyu Park,et al.  Correction to "Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer". , 2014, The journal of physical chemistry letters.

[19]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[20]  Endre Horváth,et al.  Ultra-Low Thermal Conductivity in Organic-Inorganic Hybrid Perovskite CH3NH3PbI3. , 2014, The journal of physical chemistry letters.

[21]  K. Butler,et al.  Band alignment of the hybrid halide perovskites CH 3 NH 3 PbCl 3 ,C H 3 NH 3 PbBr 3 and CH 3 NH 3 PbI 3 , 2015 .

[22]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[23]  Steffen Meyer,et al.  Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity , 2015 .

[24]  Jinsong Huang,et al.  Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers , 2015 .

[25]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[26]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[27]  Xudong Yang,et al.  A dopant-free hole-transporting material for efficient and stable perovskite solar cells , 2014 .

[28]  Arrelaine A. Dameron,et al.  Evaluation of moisture ingress from the perimeter of photovoltaic modules , 2014 .

[29]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[30]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[31]  Wei,et al.  Role of metal d states in II-VI semiconductors. , 1988, Physical review. B, Condensed matter.

[32]  David Cahen,et al.  Photovoltaics: Perovskite cells roll forward , 2014 .

[33]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[34]  Tao Xu,et al.  Pseudohalide-induced moisture tolerance in perovskite CH3 NH3 Pb(SCN)2 I thin films. , 2015, Angewandte Chemie.

[35]  Wei Zhang,et al.  Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer. , 2015, The journal of physical chemistry letters.

[36]  Karl Leo,et al.  Perovskite photovoltaics: Signs of stability. , 2015, Nature nanotechnology.

[37]  Eric T. Hoke,et al.  A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. , 2014, Angewandte Chemie.

[38]  Mohammad Khaja Nazeeruddin,et al.  Outdoor Performance and Stability under Elevated Temperatures and Long‐Term Light Soaking of Triple‐Layer Mesoporous Perovskite Photovoltaics , 2015 .

[39]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[40]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[41]  A. Walsh,et al.  Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH3NH3PbI3 , 2015, 1506.01301.

[42]  Nam-Gyu Park,et al.  Organolead Halide Perovskite: New Horizons in Solar Cell Research , 2014 .

[43]  Wei Zhang,et al.  Improving the Long-term Stability of Perovskite Solar Cells with a Porous Al , 2015 .

[44]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[45]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[46]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[47]  Su-Huai Wei,et al.  Halide perovskite materials for solar cells: a theoretical review , 2015 .

[48]  H. Snaith,et al.  Enhanced Hole Extraction in Perovskite Solar Cells Through Carbon Nanotubes. , 2014, The journal of physical chemistry letters.

[49]  A. Walsh,et al.  Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites , 2014, Angewandte Chemie.

[50]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[51]  J. Even,et al.  Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications , 2013 .

[52]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[53]  Kai Zhu,et al.  Charge Transport and Recombination in Perovskite (CH3NH3)PbI3 Sensitized TiO2 Solar Cells , 2013 .

[54]  Darrick J. Williams,et al.  Temperature dependence of the crystal structure of α-AgSCN by powder neutron diffraction , 2007 .

[55]  Michael Daub,et al.  Synthesis, single-crystal structure and characterization of (CH3 NH3 )2 Pb(SCN)2 I2. , 2015, Angewandte Chemie.

[56]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[57]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.