High-Order Implicit Shock Tracking with Targeted Mesh Optimization and PDE-Based Smoothing

[1]  Andrew Corrigan,et al.  A moving discontinuous Galerkin finite element method for flows with interfaces , 2018, International Journal for Numerical Methods in Fluids.

[2]  Brian T. Helenbrook,et al.  A novel stabilization method for high-order shock fitting with finite element methods , 2021, J. Comput. Phys..

[3]  J. Peraire,et al.  Sub-Cell Shock Capturing for Discontinuous Galerkin Methods , 2006 .

[4]  Zhiliang Xu,et al.  Conservative Front Tracking with Improved Accuracy , 2003, SIAM J. Numer. Anal..

[5]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[6]  David L. Darmofal,et al.  Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. Formulation , 2010, J. Comput. Phys..

[7]  D. Leservoisier,et al.  About theoretical and practical impact of mesh adaptation on approximation of functions and PDE solutions , 2003 .

[8]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[9]  Per-Olof Persson,et al.  An optimization-based approach for high-order accurate discretization of conservation laws with discontinuous solutions , 2017, J. Comput. Phys..

[10]  Matthew J. Zahr,et al.  High-Order Resolution of Multidimensional Compressible Reactive Flow Using Implicit Shock Tracking , 2020 .

[11]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[12]  Pramod K. Subbareddy,et al.  Advances in computational fluid dynamics methods for hypersonic flows , 2015 .

[13]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[14]  G. R. Shubin,et al.  Fully implicit shock tracking , 1982 .

[15]  Gino Moretti,et al.  Thirty-six years of shock fitting , 2002 .

[16]  Per-Olof Persson,et al.  Implicit shock tracking using an optimization-based, r-adaptive, high-order discontinuous Galerkin method , 2020, J. Comput. Phys..