A probabilistic algorithm approximating solutions of a singular PDE of porous media type
暂无分享,去创建一个
[1] David M. Raup,et al. How Nature Works: The Science of Self-Organized Criticality , 1997 .
[2] D. Jordan,et al. Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers , 1979 .
[3] R W Hockney,et al. Computer Simulation Using Particles , 1966 .
[4] M. C. Jones,et al. A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .
[5] B. Jourdain. Probabilistic approximation for a porous medium equation , 2000 .
[6] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .
[7] R. Natalini,et al. Diffusive BGK approximations for nonlinear multidimensional parabolic equations , 2000 .
[8] A. Bowman. An alternative method of cross-validation for the smoothing of density estimates , 1984 .
[9] J. Kacur,et al. solution of nonlinear diffusion problems by linear approximation schemes , 1993 .
[10] Lorenzo Pareschi,et al. Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.
[11] C. D. Kemp,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[12] G. Terrell. The Maximal Smoothing Principle in Density Estimation , 1990 .
[13] Karl Oelschläger,et al. A fluctuation theorem for moderately interacting diffusion processes , 1987 .
[14] Sylvie Méléard,et al. A propagation of chaos result for a system of particles with moderate interaction , 1987 .
[15] J. Dawson. Particle simulation of plasmas , 1983 .
[16] V. Hardman. Author Information , 2021, Disability and Health Journal.
[17] Alessandro Vespignani,et al. Local Rigidity and Self-Organized Criticality for Avalanches , 1995 .
[18] Matthew P. Wand,et al. Kernel Smoothing , 1995 .
[19] M. C. Jones,et al. A reliable data-based bandwidth selection method for kernel density estimation , 1991 .
[20] Xiongzhi Chen. Brownian Motion and Stochastic Calculus , 2008 .
[21] M. Crandall,et al. A semilinear equation in $L^1 (\mathbb {R}^N)$ , 1975 .
[22] H. Brezis,et al. A numerical method for solving the problem u t - Δ f ( u ) = 0 , 2009 .
[23] Haim Brezis,et al. A numerical method for solving the problem $u_t - \Delta f (u) = 0$ , 1979 .
[24] S. Osher,et al. Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .
[25] M. Woodroofe. On Choosing a Delta-Sequence , 1970 .
[26] A. Sznitman. Topics in propagation of chaos , 1991 .
[27] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[28] Karl Oelschläger,et al. Simulation of the Solution of a Viscous Porous Medium Equation by a Particle Method , 2002, SIAM J. Numer. Anal..
[29] Wang Chi-Shu,et al. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws , 1997 .
[30] C. D. Levermore,et al. Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .
[31] École d'été de probabilités de Saint-Flour,et al. Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .
[32] V. Barbu,et al. Probabilistic representation for solutions of an irregular porous media type equation: the degenerate case , 2008, 0805.2383.
[33] Robert Philipowski. Interacting diffusions approximating the porous medium equation and propagation of chaos , 2007 .
[34] Wen-An Yong,et al. A numerical approach to degenerate parabolic equations , 2002, Numerische Mathematik.
[35] Karl Oelschläger,et al. A law of large numbers for moderately interacting diffusion processes , 1985 .
[36] D. W. Scott,et al. Biased and Unbiased Cross-Validation in Density Estimation , 1987 .
[37] Nicolas Khenkine,et al. Université Paris 13 , 2013 .
[38] D. Talay,et al. A stochastic particle method for some one-dimensional nonlinear p.d.e. , 1995 .
[39] Alessio Figalli,et al. Convergence to the viscous porous medium equa- tion and propagation of chaos , 2008 .
[40] M. Pulvirenti,et al. Propagation of chaos for Burgers' equation , 1983 .
[41] Shaoqiang Tang,et al. Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems , 2004, Math. Comput..
[42] Z. Xin,et al. The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .
[43] Processus associés à l'équation des milieux poreux , 1996 .
[44] Benjamin Jourdain,et al. Propagation of chaos and fluctuations for a moderate model with smooth initial data , 1998 .
[45] D. W. Stroock,et al. Multidimensional Diffusion Processes , 1979 .
[46] P. J. Green,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[47] G. Russo,et al. Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .
[48] Gabriella Puppo,et al. High-Order Relaxation Schemes for Nonlinear Degenerate Diffusion Problems , 2006, SIAM J. Numer. Anal..
[49] R. Showalter. Monotone operators in Banach space and nonlinear partial differential equations , 1996 .
[50] Mireille Bossy,et al. A stochastic particle method for the McKean-Vlasov and the Burgers equation , 1997, Math. Comput..
[51] M. Rudemo. Empirical Choice of Histograms and Kernel Density Estimators , 1982 .
[52] F. Krogh,et al. Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.
[53] D. W. Scott,et al. Oversmoothed Nonparametric Density Estimates , 1985 .
[54] Dirk P. Kroese,et al. Kernel density estimation via diffusion , 2010, 1011.2602.