A probabilistic algorithm approximating solutions of a singular PDE of porous media type

The object of this paper is a one-dimensional generalized porous media equation (PDE) with possibly discontinuous coefficient $\beta$, which is well-posed as an evolution problem in $L^1(\mathbb{R})$. In some recent papers of Blanchard et alia and Barbu et alia, the solution was represented by the solution of a non-linear stochastic differential equation in law if the initial condition is a bounded integrable function. We first extend this result, at least when $\beta$ is continuous and the initial condition is only integrable with some supplementary technical assumption. The main purpose of the article consists in introducing and implementing a stochastic particle algorithm to approach the solution to (PDE) which also fits in the case when $\beta$ is possibly irregular, to predict some long-time behavior of the solution and in comparing with some recent numerical deterministic techniques.

[1]  David M. Raup,et al.  How Nature Works: The Science of Self-Organized Criticality , 1997 .

[2]  D. Jordan,et al.  Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers , 1979 .

[3]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[4]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[5]  B. Jourdain Probabilistic approximation for a porous medium equation , 2000 .

[6]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[7]  R. Natalini,et al.  Diffusive BGK approximations for nonlinear multidimensional parabolic equations , 2000 .

[8]  A. Bowman An alternative method of cross-validation for the smoothing of density estimates , 1984 .

[9]  J. Kacur,et al.  solution of nonlinear diffusion problems by linear approximation schemes , 1993 .

[10]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[11]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[12]  G. Terrell The Maximal Smoothing Principle in Density Estimation , 1990 .

[13]  Karl Oelschläger,et al.  A fluctuation theorem for moderately interacting diffusion processes , 1987 .

[14]  Sylvie Méléard,et al.  A propagation of chaos result for a system of particles with moderate interaction , 1987 .

[15]  J. Dawson Particle simulation of plasmas , 1983 .

[16]  V. Hardman Author Information , 2021, Disability and Health Journal.

[17]  Alessandro Vespignani,et al.  Local Rigidity and Self-Organized Criticality for Avalanches , 1995 .

[18]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[19]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[20]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[21]  M. Crandall,et al.  A semilinear equation in $L^1 (\mathbb {R}^N)$ , 1975 .

[22]  H. Brezis,et al.  A numerical method for solving the problem u t - Δ f ( u ) = 0 , 2009 .

[23]  Haim Brezis,et al.  A numerical method for solving the problem $u_t - \Delta f (u) = 0$ , 1979 .

[24]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[25]  M. Woodroofe On Choosing a Delta-Sequence , 1970 .

[26]  A. Sznitman Topics in propagation of chaos , 1991 .

[27]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[28]  Karl Oelschläger,et al.  Simulation of the Solution of a Viscous Porous Medium Equation by a Particle Method , 2002, SIAM J. Numer. Anal..

[29]  Wang Chi-Shu,et al.  Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws , 1997 .

[30]  C. D. Levermore,et al.  Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .

[31]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[32]  V. Barbu,et al.  Probabilistic representation for solutions of an irregular porous media type equation: the degenerate case , 2008, 0805.2383.

[33]  Robert Philipowski Interacting diffusions approximating the porous medium equation and propagation of chaos , 2007 .

[34]  Wen-An Yong,et al.  A numerical approach to degenerate parabolic equations , 2002, Numerische Mathematik.

[35]  Karl Oelschläger,et al.  A law of large numbers for moderately interacting diffusion processes , 1985 .

[36]  D. W. Scott,et al.  Biased and Unbiased Cross-Validation in Density Estimation , 1987 .

[37]  Nicolas Khenkine,et al.  Université Paris 13 , 2013 .

[38]  D. Talay,et al.  A stochastic particle method for some one-dimensional nonlinear p.d.e. , 1995 .

[39]  Alessio Figalli,et al.  Convergence to the viscous porous medium equa- tion and propagation of chaos , 2008 .

[40]  M. Pulvirenti,et al.  Propagation of chaos for Burgers' equation , 1983 .

[41]  Shaoqiang Tang,et al.  Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems , 2004, Math. Comput..

[42]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[43]  Processus associés à l'équation des milieux poreux , 1996 .

[44]  Benjamin Jourdain,et al.  Propagation of chaos and fluctuations for a moderate model with smooth initial data , 1998 .

[45]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[46]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[47]  G. Russo,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .

[48]  Gabriella Puppo,et al.  High-Order Relaxation Schemes for Nonlinear Degenerate Diffusion Problems , 2006, SIAM J. Numer. Anal..

[49]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[50]  Mireille Bossy,et al.  A stochastic particle method for the McKean-Vlasov and the Burgers equation , 1997, Math. Comput..

[51]  M. Rudemo Empirical Choice of Histograms and Kernel Density Estimators , 1982 .

[52]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[53]  D. W. Scott,et al.  Oversmoothed Nonparametric Density Estimates , 1985 .

[54]  Dirk P. Kroese,et al.  Kernel density estimation via diffusion , 2010, 1011.2602.