Mantel-Haenszel estimators of odds ratios for stratified dependent binomial data

A standard approach to analyzing n binary matched pairs usually represented in n 2x2 tables is to apply a subject-specific model; for the simplest situation it is the so-called Rasch model. An alternative population-averaged approach is to apply a marginal model to the single 2x2 table formed by n subjects. For the situation of having an additional stratification variable with K levels forming K 2x2 tables, standard fitting approaches, such as generalized estimating equations and maximum likelihood, or, alternatively, the standard Mantel-Haenszel (MH) estimator, can be applied. However, while all these standard approaches are consistent under a large-stratum limiting model, they are not consistent under a sparse-data limiting model. In this paper, we propose a new MH estimator and a variance estimator that are both dually consistent: consistent under both large-stratum and sparse-data limiting situations. In a simulation study, the properties of the proposed estimators are confirmed, and the estimator is compared with standard marginal methods. The simulation study also considers the case when the homogeneity assumption of the odds ratios does not hold, and the asymptotic limit of the proposed MH estimator under this situation is derived. The results show that the proposed MH estimator is generally better than the standard estimator, and the same can be said about the associated Wald-type confidence intervals.

[1]  S Greenland,et al.  The effect of misclassification in matched-pair case-control studies. , 1982, American journal of epidemiology.

[2]  J. Lang Score and profile likelihood confidence intervals for contingency table parameters , 2008, Statistics in medicine.

[3]  P. Diggle,et al.  Analysis of Longitudinal Data. , 1997 .

[4]  Alan J. Lee,et al.  Generating Random Binary Deviates Having Fixed Marginal Distributions and Specified Degrees of Association , 1993 .

[5]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[6]  J. Ware,et al.  Applied Longitudinal Analysis , 2004 .

[7]  Qing Liu,et al.  A note on Gauss—Hermite quadrature , 1994 .

[8]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[9]  N. Laird,et al.  A likelihood-based method for analysing longitudinal binary responses , 1993 .

[10]  Babette A Brumback,et al.  Efforts to adjust for confounding by neighborhood using complex survey data , 2010, Statistics in medicine.

[11]  Alan Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[12]  M. Haber Maximum likelihood methods for linear and log-linear models in categorical data , 1985 .

[13]  A Agresti,et al.  Modeling a Categorical Variable Allowing Arbitrarily Many Category Choices , 1999, Biometrics.

[14]  Ruth M. Mickey,et al.  A Generalization of the Mantel-Haenszel Estimator of Partial Association for 2 x J x K Tables , 1985 .

[15]  A. Agresti,et al.  Simultaneously Modeling Joint and Marginal Distributions of Multivariate Categorical Responses , 1994 .

[16]  G. Rasch On General Laws and the Meaning of Measurement in Psychology , 1961 .

[17]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[18]  David R. Cox,et al.  Some remarks on overdispersion , 1983 .

[19]  J. Gart An exact test for comparing matched proportions in crossover designs , 1969 .

[20]  J Carpenter,et al.  Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. , 2000, Statistics in medicine.

[21]  Christopher R Bilder,et al.  Testing for conditional multiple marginal independence. , 2002, Biometrics.

[22]  Alan Agresti,et al.  Categorical Data Analysis , 2003 .

[23]  S Greenland,et al.  Generalized Mantel-Haenszel estimators for K 2 x J tables. , 1989, Biometrics.

[24]  Jason Fine,et al.  Estimating equations for association structures , 2004, Statistics in medicine.

[25]  Joseph B. Lang,et al.  Multinomial-Poisson homogeneous models for contingency tables , 2003 .

[26]  Kung-Yee Liang,et al.  Odds ratio inference with dependent data , 1985 .

[27]  W. Haenszel,et al.  Statistical aspects of the analysis of data from retrospective studies of disease. , 1959, Journal of the National Cancer Institute.

[28]  P. Albert,et al.  Models for longitudinal data: a generalized estimating equation approach. , 1988, Biometrics.

[29]  Joseph B. Lang,et al.  Maximum likelihood methods for a generalized class of log-linear models , 1996 .

[30]  Wicher Bergsma,et al.  Marginal models for dependent, clustered, and longitudinal categorical data , 2009 .

[31]  Erling B. Andersen,et al.  Discrete Statistical Models with Social Science Applications. , 1980 .

[32]  J. D. Kalbfleisch,et al.  Conditions for consistent estimation in mixed-effects models for binary matched-pairs data† , 1994 .

[33]  Scott L. Zeger,et al.  Marginalized Multilevel Models and Likelihood Inference , 2000 .

[34]  Alan Agresti,et al.  Strategies for Modeling a Categorical Variable Allowing Multiple Category Choices , 2001 .

[35]  T. Suesse Analysis and Diagnostics of Categorical Variables with Multiple Outcomes , 2009 .

[36]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[37]  L. Zhao,et al.  Correlated binary regression using a quadratic exponential model , 1990 .