Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects
暂无分享,去创建一个
Charles C. Sorrell | Janusz Nowotny | Tadeusz Bak | J. Nowotny | C. Sorrell | T. Bak | M. Rękas | Mieczyslaw Rekas
[1] M. Rȩkas,et al. Properties of TiO2 as photoelectrode for hydrogen generation using solar energy , 2001 .
[2] James R. Bolton,et al. Limiting and realizable efficiencies of solar photolysis of water , 1985, Nature.
[3] T. Perng,et al. Photoelectrochemical properties of sulfidized TiO2 electrodes , 1995 .
[4] O. Srivastava,et al. Studies on n-CdSe/Ti Semiconductor Septum Based Photoelectrochemical Solar Cell in Regard to the Influence of Structural and Compositional Characteristics of the Semiconductor Electrode , 1992 .
[5] T. Ohta,et al. Solar-hydrogen energy systems , 1979 .
[6] Anders Hagfeldt,et al. Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell , 1998 .
[7] Bruce A. Parkinson,et al. Enhanced photoelectrochemical solar‐energy conversion by gallium arsenide surface modification , 1978 .
[8] James R. Bolton,et al. Solar photoproduction of hydrogen: A review , 1996 .
[9] J. F. Houlihan,et al. Doped polycrystalline TiO2 electrodes for the photo-assisted electrolysis of water , 1978 .
[10] Hideo Tamura,et al. A Photo-electochemical cell with production of hydrogen and oxygen by a cell reaction , 1975 .
[11] B. Parkinson,et al. Recent advances in high quantum yield dye sensitization of semiconductor electrodes , 1992 .
[12] Chiba Mitsugi,et al. WE-NET: Japanese hydrogen program , 1998 .
[13] Kam Sing Wong,et al. Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale , 1998 .
[14] S. Morrison. Electrochemistry at Semiconductor and Oxidized Metal Electrodes , 1980 .
[15] R. Memming. Mechanism of the Electrochemical Reduction of Persulfates and Hydrogen Peroxide , 1969 .
[16] R. Memming. Solar energy conversion by photoelectrochemical processes , 1980 .
[17] D. Ginley,et al. Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential , 1976 .
[18] P. Salvador. The behaviour of aluminum -doped n-TiO2 electrodes in the photoassisted oxidation of water , 1980 .
[19] P. D. Fleischauer,et al. Photochemical hydrogen formation by the use of titanium dioxide thin-film electrodes with visible-light excitation , 1978 .
[20] R. Rauh,et al. Design and evaluation of new oxide photoanodes for the photoelectrolysis of water with solar energy , 1979 .
[21] Bruce A. Parkinson,et al. On the efficiency and stability of photoelectrochemical devices , 1984 .
[22] M. Anderson,et al. The photoelectrochemical properties of Nb-doped TiO2 semiconducting ceramic membrane , 1991 .
[23] O. Srivastava,et al. On the photoelectrodes TiO2 and WSe2 for hydrogen production through photoelectrolysis , 1988 .
[24] Yoshihiro Nakato,et al. The Quantum Yield of Photolysis of Water on TiO2 Electrodes , 1975 .
[25] R. D. Nasby,et al. Tungsten trioxide as an electrode for photoelectrolysis of water , 1976 .
[26] Shahed U. M. Khan,et al. Photoresponse and AC impedance characterization of n-TiO2 films during hydrogen and oxygen evolution reactions in an electrochemical cell , 1997 .
[27] Turner,et al. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.
[28] M. Gratzel,et al. Heterogeneous photocatalysis: enhanced dihydrogen production in titanium dioxide dispersions under irradiation. The effect of magnesium promoter at the semiconductor interface , 1986 .
[29] O. Srivastava,et al. Solar hydrogen production using semiconductor septum (n-CdSe/Ti and n-TiO2/Ti) electrode based photoelectrochemical solar cells , 1998 .
[30] K. Yoon,et al. Photoeffects in undoped and doped SrTiO3 ceramic electrodes , 1987 .
[31] H. Seguin,et al. Reactively sputtered TiO2 electrodes from metallic targets for water electrolysis using solar energy , 1981 .
[32] Per Kofstad,et al. Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. , 1972 .
[33] P. Salvador,et al. The effect of the substitution of Ru for Ti on the electro- and photoelectrochemical properties of TiO2 crystals , 1985 .
[34] O. Srivastava,et al. Structural and photoelectrochemical studies of In2O3-TiO2 and WSe2 photoelectrodes for photoelectrochemical production of hydrogen , 1989 .
[35] Anders Hagfeldt,et al. Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .
[36] B. Seraphin. Solar Energy Conversion , 1979 .
[37] J. Nowotny,et al. Photo-electrochemical properties of the TiO2-Pt system in aqueous solutions , 2002 .
[38] H. Tsubomura,et al. Photoanodic Behavior of n‐type Cadmium Sulfide in Acetonitrile Solutions Containing Iodide Ion , 1978 .
[39] W. Tai. Photoelectrochemical properties of SnO2/TiO2 coupled electrode sensitized by a mercurochrome dye , 2001 .
[40] J. Bolton,et al. Requirements for ideal performance of photochemical and photovoltaic solar energy converters , 1990 .
[41] J. Doumerc,et al. Photoelectronic processes in transition-element doped n-type TiO2 electrodes , 1980 .
[42] O. N. Srivastava,et al. High conversion efficiency photoelectrochemical solar cells , 1996 .
[43] W. Smyrl,et al. Photoelectrochemical investigations of thin metal-oxide films : TiO2, Al2O3, and HfO2 on the parent metals , 1993 .
[44] J. Carey,et al. Intensity effects in the electrochemical photolysis of water at the TiO2 electrode , 1976, Nature.
[45] A Szyszka,et al. Ten years of solar hydrogen demonstration project at Neunburg vorm Wald, Germany , 1998 .
[46] R. Reisfeld,et al. Luminescence enhancement of rhodamine 6G in sol-gel films containing silver aggregates , 1988 .
[47] Yongfang Li,et al. Photoelectrochemical studies on acid-doped polyaniline as sensitizer for TiO2 nanoporous film , 1998 .
[48] R. Memming,et al. PHOTOCHEMICAL AND ELECTROCHEMICAL PROCESSES OF EXCITED DYES AT SEMICONDUCTOR AND METAL ELECTRODES * , 1972 .
[49] Stuart Licht,et al. Efficient Solar Water Splitting, Exemplified by RuO2-Catalyzed AlGaAs/Si Photoelectrolysis , 2000 .
[50] S. Martin,et al. Environmental Applications of Semiconductor Photocatalysis , 1995 .
[51] T. Yoko,et al. Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO2 film electrodes prepared by sol-gel method , 1997 .
[52] D. I. Tchernev,et al. Photoelectrolysis of water in cells with TiO2 anodes , 1975 .
[53] W. Brattain,et al. Experiments on the interface between germanium and an electrolyte , 1955 .
[54] J. Augustynski. The role of the surface intermediates in the photoelectrochemical behaviour of anatase and rutile TiO2 , 1993 .
[55] J. Nowotny,et al. Electrical Properties of Oxide Materials , 1996, Key Engineering Materials.
[56] F. Cardon,et al. Electrochemical Properties of the Semiconducting TiO2 (Rutile) Single Crystal Electrode , 1976 .
[57] D. Singh,et al. Investigations on the mixed oxide material TiO2-In2O3 in regard to photoelectrolytic hydrogen production , 1990 .
[58] O. J. Murphy,et al. Photoelectrochemical behavior and surface characterization of some lanthanum-based perovskite oxide electrodes , 1981 .
[59] Kazuhiko Yazawa,et al. Photoelectrolysis of water with TiO2‐covered solar‐cell electrodes , 1976 .
[60] M. E. Zayat,et al. Photoelectrochemical properties of dye sensitized Zr-doped SrTiO3 electrodes , 1998 .
[61] O. Haas,et al. Design and study of a photosensitive interface: a derivatized n-type silicon photoelectrode , 1978 .
[62] S. Cai,et al. Photoelectrochemical properties of metal-ion-doped TiO2 nanocrystalline electrodes , 1999 .
[63] D. Cahen,et al. Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC) , 1976, Nature.
[64] T. Yoko,et al. Sol—gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles , 1996 .
[65] Eric L. Miller,et al. High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes , 1998 .
[66] Arthur J. Nozik,et al. p‐n photoelectrolysis cells , 1976 .
[67] I. Lundström,et al. Stabilization of n‐Si Photoanodes to Surface Corrosion in Aqueous Electrolyte with a Thin Film of Polypyrrole , 1981 .
[68] N. Lewis,et al. Chemically derivatized n-type silicon photoelectrodes. Stabilization to surface corrosion in aqueous electrolyte solutions and mediation of oxidation reactions by surface-attached electroactive ferrocene reagents , 1979 .
[69] E. Sato,et al. New preparation method for doped polycrystalline TiO2 and Nb2O5 and their photoelectrochemical properties , 1982 .
[70] T. Yoko,et al. Preparation and photoelectrochemical properties of porous thin films composed of submicron TiO2 particles , 2000 .
[71] J. Bockris,et al. Hydrogen and electricity from water and light: A lanthanum chromite-titanium dioxide anode , 1979 .
[72] T. Mallouk,et al. Photoelectrochemistry and interfacial energetics of titanium dioxide photoelectrodes in fluoride-containing solutions , 1990 .
[73] F. Decker,et al. Subband Gap Response of TiO2 and SrTiO3 Photoelectrodes , 1981 .
[74] Heinz Gerischer,et al. Elektrochemische Untersuchungen zur spektralen Sensibilisierung von ZnO‐Einkristallen , 1968 .
[75] M. Grätzel,et al. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.
[76] D. Matthews,et al. Minimizing the dark current at the dye-sensitized TiO2 electrode , 1998 .
[77] H. Gerischer,et al. ELECTROCHEMICAL TECHNIQUES FOR THE STUDY OF PHOTOSENSITIZATION * , 1972 .
[78] T. Yoko,et al. Sol-gel preparation of Ti1-xVxO2 solid solution film electrodes with conspicuous photoresponse in the visible region , 1999 .
[79] U. Stimming,et al. Iron(III)-titanium(IV)-oxide electrodes: Their structural, electrochemical and photoelectrochemical properties , 1984 .
[80] A. Heller,et al. Semiconductor liquid junction solar cells based on anodic sulphide films , 1976, Nature.
[81] T. Perng,et al. Effects of sintering on the photoelectrochemical properties of Nb-doped TiO2 electrodes , 1995 .
[82] M. Matsumura,et al. Dye-sensitization on the Photocurrent at Zinc Oxide Electrode in Aqueous Electrolyte Solution , 1977 .
[83] D. Haneman,et al. Electrochemical Doping of TiO2 and Fe2 O 3 , 1977 .
[84] J. G. Mavroides,et al. Photoelectrolysis of water in cells with SrTiO3 anodes , 1976 .
[85] A. Fujishima,et al. Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.
[86] E. Sato,et al. Visible Light Response of Polycrystalline TiO2 Electrodes , 1980 .
[87] M. Froelicher,et al. Influence of Copper Addition on Optical Properties of TiO2 , 1979 .
[88] T. Yoko,et al. Preparation and photoelectrochemical properties of Ti1−xVxO2 solid solution thin film photoelectrodes with gradient bandgap , 1999 .
[89] J. Herrmann,et al. Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination , 1984 .
[90] J. Augustynski,et al. Photoelectrolysis of Water; Photoresponses of Nickel, Chromium and Zinc‐Doped Polycrystalline TiO2 Electrodes , 1980 .
[91] V. Antonucci,et al. Photoassisted decomposition of water over modified rutile electrodes , 1982 .
[92] Brian D. James,et al. Market penetration scenarios for fuel cell vehicles , 1998 .
[93] A. Nozik,et al. Photoelectrolysis of water using semiconducting TiO2 crystals , 1975, Nature.
[94] H. Kozuka,et al. Photoelectrochemical properties of sol–gel-derived anatase and rutile TiO2 films , 1998 .
[95] L. Harvey,et al. Solar-hydrogen electricity generation and global CO2 emission reduction , 1996 .
[96] A. Ghosh,et al. Transition-metal dopants for extending the response of titanate photoelectrolysis anodes , 1979 .
[97] A. Ghosh,et al. Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes , 1977 .
[98] Oscar L. Malta,et al. Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles , 1990 .
[99] H. Gerischer. Über den Ablauf von Redoxreaktionen an Metallen und an Halbleitern , 1960 .
[100] T. Kutty,et al. Photocatalytic activity of tin-substituted TiO2 in visible light , 1989 .
[101] T. Kutty,et al. Sacrificial water photocleavage using Nb-doped TiO2 fine particles under band gap irradiation , 1990 .
[102] M. Okuda,et al. Photoeffects on Semiconductor Ceramics Electrodes , 1976 .
[103] M. Rȩkas,et al. SEMICONDUCTING PROPERTIES OF UNDOPED TiO2 , 1997 .
[104] I. Barin. Thermochemical data of pure substances , 1989 .
[105] Akira Fujishima,et al. Hydrogen Production under Sunlight with an Electrochemical Photocell , 1975 .
[106] Akira Fujishima,et al. Photoelectrochemical Reactions at SrTiO3 Single Crystal Electrode , 1976 .
[107] O. Srivastava,et al. Preliminary investigations on the mixed oxide material TiO2In2O3 with regard to photoelectrolytic hydrogen production , 1991 .
[108] P. Salvador. Analysis of the physical properties of TiO2Be electrodes in the photoassisted oxidation of water , 1982 .
[109] Wonyong Choi,et al. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics , 1994 .
[110] P. Hagenmuller,et al. Visible light response of Ni2+ and Nb4+ doped-polycristalline TiO2 anodes , 1981 .
[111] T. E. Phillips,et al. TiO/sub 2/-VO/sub 2/ alloys: reduced bandgap effects in the photoelectrolysis of water , 1982 .
[112] A. Bard,et al. Semiconductor Electrodes VI . A Photoelectrochemical Solar Cell Employing a Anode and Oxygen Cathode , 1976 .
[113] P. Salvador. The influence of niobium doping on the efficiency of n-TiO2 electrode in water photoelectrolysis , 1980 .
[114] Y. Nakato,et al. Photoeffects on the potentials of thin metal films on a n-TiO2 crystal wafer. The mechanism of semiconductor photocatalysts , 1982 .
[115] E. Sato,et al. Photoelectrochemical Properties of Polycrystalline TiO2 Doped with 3d Transition Metals , 1981 .
[116] A. Hagfeldt,et al. Electrochemical and photoelectrochemical investigation of new carboxylatobipyridine(bis-bipyridine)ruthenium(II) complexes for dye-sensitized TiO2 electrodes , 2000 .
[117] J. Goodenough,et al. Impurity levels of iron-group ions in TiO2(II) , 1979 .
[118] O. Srivastava,et al. Structural and photoelectrochemical studies of In2O3 modified TiO2 in regard to hydrogen production through photoelectrolysis , 1989 .
[119] Janusz Nowotny,et al. Science of ceramic interfaces II , 1994 .
[120] K. Mizushima,et al. Energy Levels of Iron Group Impurities in TiO 2 , 1972 .
[121] C. Granqvist,et al. Photoelectrochemical effect in dye sensitized, sputter deposited Ti oxide films: The role of thickness-dependent roughness and porosity , 1999 .
[122] C. Stalder,et al. Photoassisted Oxidation of Water at Beryllium‐Doped Polycrystalline TiO2 Electrodes , 1979 .