Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects

[1]  M. Rȩkas,et al.  Properties of TiO2 as photoelectrode for hydrogen generation using solar energy , 2001 .

[2]  James R. Bolton,et al.  Limiting and realizable efficiencies of solar photolysis of water , 1985, Nature.

[3]  T. Perng,et al.  Photoelectrochemical properties of sulfidized TiO2 electrodes , 1995 .

[4]  O. Srivastava,et al.  Studies on n-CdSe/Ti Semiconductor Septum Based Photoelectrochemical Solar Cell in Regard to the Influence of Structural and Compositional Characteristics of the Semiconductor Electrode , 1992 .

[5]  T. Ohta,et al.  Solar-hydrogen energy systems , 1979 .

[6]  Anders Hagfeldt,et al.  Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell , 1998 .

[7]  Bruce A. Parkinson,et al.  Enhanced photoelectrochemical solar‐energy conversion by gallium arsenide surface modification , 1978 .

[8]  James R. Bolton,et al.  Solar photoproduction of hydrogen: A review , 1996 .

[9]  J. F. Houlihan,et al.  Doped polycrystalline TiO2 electrodes for the photo-assisted electrolysis of water , 1978 .

[10]  Hideo Tamura,et al.  A Photo-electochemical cell with production of hydrogen and oxygen by a cell reaction , 1975 .

[11]  B. Parkinson,et al.  Recent advances in high quantum yield dye sensitization of semiconductor electrodes , 1992 .

[12]  Chiba Mitsugi,et al.  WE-NET: Japanese hydrogen program , 1998 .

[13]  Kam Sing Wong,et al.  Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale , 1998 .

[14]  S. Morrison Electrochemistry at Semiconductor and Oxidized Metal Electrodes , 1980 .

[15]  R. Memming Mechanism of the Electrochemical Reduction of Persulfates and Hydrogen Peroxide , 1969 .

[16]  R. Memming Solar energy conversion by photoelectrochemical processes , 1980 .

[17]  D. Ginley,et al.  Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential , 1976 .

[18]  P. Salvador The behaviour of aluminum -doped n-TiO2 electrodes in the photoassisted oxidation of water , 1980 .

[19]  P. D. Fleischauer,et al.  Photochemical hydrogen formation by the use of titanium dioxide thin-film electrodes with visible-light excitation , 1978 .

[20]  R. Rauh,et al.  Design and evaluation of new oxide photoanodes for the photoelectrolysis of water with solar energy , 1979 .

[21]  Bruce A. Parkinson,et al.  On the efficiency and stability of photoelectrochemical devices , 1984 .

[22]  M. Anderson,et al.  The photoelectrochemical properties of Nb-doped TiO2 semiconducting ceramic membrane , 1991 .

[23]  O. Srivastava,et al.  On the photoelectrodes TiO2 and WSe2 for hydrogen production through photoelectrolysis , 1988 .

[24]  Yoshihiro Nakato,et al.  The Quantum Yield of Photolysis of Water on TiO2 Electrodes , 1975 .

[25]  R. D. Nasby,et al.  Tungsten trioxide as an electrode for photoelectrolysis of water , 1976 .

[26]  Shahed U. M. Khan,et al.  Photoresponse and AC impedance characterization of n-TiO2 films during hydrogen and oxygen evolution reactions in an electrochemical cell , 1997 .

[27]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[28]  M. Gratzel,et al.  Heterogeneous photocatalysis: enhanced dihydrogen production in titanium dioxide dispersions under irradiation. The effect of magnesium promoter at the semiconductor interface , 1986 .

[29]  O. Srivastava,et al.  Solar hydrogen production using semiconductor septum (n-CdSe/Ti and n-TiO2/Ti) electrode based photoelectrochemical solar cells , 1998 .

[30]  K. Yoon,et al.  Photoeffects in undoped and doped SrTiO3 ceramic electrodes , 1987 .

[31]  H. Seguin,et al.  Reactively sputtered TiO2 electrodes from metallic targets for water electrolysis using solar energy , 1981 .

[32]  Per Kofstad,et al.  Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. , 1972 .

[33]  P. Salvador,et al.  The effect of the substitution of Ru for Ti on the electro- and photoelectrochemical properties of TiO2 crystals , 1985 .

[34]  O. Srivastava,et al.  Structural and photoelectrochemical studies of In2O3-TiO2 and WSe2 photoelectrodes for photoelectrochemical production of hydrogen , 1989 .

[35]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[36]  B. Seraphin Solar Energy Conversion , 1979 .

[37]  J. Nowotny,et al.  Photo-electrochemical properties of the TiO2-Pt system in aqueous solutions , 2002 .

[38]  H. Tsubomura,et al.  Photoanodic Behavior of n‐type Cadmium Sulfide in Acetonitrile Solutions Containing Iodide Ion , 1978 .

[39]  W. Tai Photoelectrochemical properties of SnO2/TiO2 coupled electrode sensitized by a mercurochrome dye , 2001 .

[40]  J. Bolton,et al.  Requirements for ideal performance of photochemical and photovoltaic solar energy converters , 1990 .

[41]  J. Doumerc,et al.  Photoelectronic processes in transition-element doped n-type TiO2 electrodes , 1980 .

[42]  O. N. Srivastava,et al.  High conversion efficiency photoelectrochemical solar cells , 1996 .

[43]  W. Smyrl,et al.  Photoelectrochemical investigations of thin metal-oxide films : TiO2, Al2O3, and HfO2 on the parent metals , 1993 .

[44]  J. Carey,et al.  Intensity effects in the electrochemical photolysis of water at the TiO2 electrode , 1976, Nature.

[45]  A Szyszka,et al.  Ten years of solar hydrogen demonstration project at Neunburg vorm Wald, Germany , 1998 .

[46]  R. Reisfeld,et al.  Luminescence enhancement of rhodamine 6G in sol-gel films containing silver aggregates , 1988 .

[47]  Yongfang Li,et al.  Photoelectrochemical studies on acid-doped polyaniline as sensitizer for TiO2 nanoporous film , 1998 .

[48]  R. Memming,et al.  PHOTOCHEMICAL AND ELECTROCHEMICAL PROCESSES OF EXCITED DYES AT SEMICONDUCTOR AND METAL ELECTRODES * , 1972 .

[49]  Stuart Licht,et al.  Efficient Solar Water Splitting, Exemplified by RuO2-Catalyzed AlGaAs/Si Photoelectrolysis , 2000 .

[50]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[51]  T. Yoko,et al.  Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO2 film electrodes prepared by sol-gel method , 1997 .

[52]  D. I. Tchernev,et al.  Photoelectrolysis of water in cells with TiO2 anodes , 1975 .

[53]  W. Brattain,et al.  Experiments on the interface between germanium and an electrolyte , 1955 .

[54]  J. Augustynski The role of the surface intermediates in the photoelectrochemical behaviour of anatase and rutile TiO2 , 1993 .

[55]  J. Nowotny,et al.  Electrical Properties of Oxide Materials , 1996, Key Engineering Materials.

[56]  F. Cardon,et al.  Electrochemical Properties of the Semiconducting TiO2 (Rutile) Single Crystal Electrode , 1976 .

[57]  D. Singh,et al.  Investigations on the mixed oxide material TiO2-In2O3 in regard to photoelectrolytic hydrogen production , 1990 .

[58]  O. J. Murphy,et al.  Photoelectrochemical behavior and surface characterization of some lanthanum-based perovskite oxide electrodes , 1981 .

[59]  Kazuhiko Yazawa,et al.  Photoelectrolysis of water with TiO2‐covered solar‐cell electrodes , 1976 .

[60]  M. E. Zayat,et al.  Photoelectrochemical properties of dye sensitized Zr-doped SrTiO3 electrodes , 1998 .

[61]  O. Haas,et al.  Design and study of a photosensitive interface: a derivatized n-type silicon photoelectrode , 1978 .

[62]  S. Cai,et al.  Photoelectrochemical properties of metal-ion-doped TiO2 nanocrystalline electrodes , 1999 .

[63]  D. Cahen,et al.  Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC) , 1976, Nature.

[64]  T. Yoko,et al.  Sol—gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles , 1996 .

[65]  Eric L. Miller,et al.  High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes , 1998 .

[66]  Arthur J. Nozik,et al.  p‐n photoelectrolysis cells , 1976 .

[67]  I. Lundström,et al.  Stabilization of n‐Si Photoanodes to Surface Corrosion in Aqueous Electrolyte with a Thin Film of Polypyrrole , 1981 .

[68]  N. Lewis,et al.  Chemically derivatized n-type silicon photoelectrodes. Stabilization to surface corrosion in aqueous electrolyte solutions and mediation of oxidation reactions by surface-attached electroactive ferrocene reagents , 1979 .

[69]  E. Sato,et al.  New preparation method for doped polycrystalline TiO2 and Nb2O5 and their photoelectrochemical properties , 1982 .

[70]  T. Yoko,et al.  Preparation and photoelectrochemical properties of porous thin films composed of submicron TiO2 particles , 2000 .

[71]  J. Bockris,et al.  Hydrogen and electricity from water and light: A lanthanum chromite-titanium dioxide anode , 1979 .

[72]  T. Mallouk,et al.  Photoelectrochemistry and interfacial energetics of titanium dioxide photoelectrodes in fluoride-containing solutions , 1990 .

[73]  F. Decker,et al.  Subband Gap Response of TiO2 and SrTiO3 Photoelectrodes , 1981 .

[74]  Heinz Gerischer,et al.  Elektrochemische Untersuchungen zur spektralen Sensibilisierung von ZnO‐Einkristallen , 1968 .

[75]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[76]  D. Matthews,et al.  Minimizing the dark current at the dye-sensitized TiO2 electrode , 1998 .

[77]  H. Gerischer,et al.  ELECTROCHEMICAL TECHNIQUES FOR THE STUDY OF PHOTOSENSITIZATION * , 1972 .

[78]  T. Yoko,et al.  Sol-gel preparation of Ti1-xVxO2 solid solution film electrodes with conspicuous photoresponse in the visible region , 1999 .

[79]  U. Stimming,et al.  Iron(III)-titanium(IV)-oxide electrodes: Their structural, electrochemical and photoelectrochemical properties , 1984 .

[80]  A. Heller,et al.  Semiconductor liquid junction solar cells based on anodic sulphide films , 1976, Nature.

[81]  T. Perng,et al.  Effects of sintering on the photoelectrochemical properties of Nb-doped TiO2 electrodes , 1995 .

[82]  M. Matsumura,et al.  Dye-sensitization on the Photocurrent at Zinc Oxide Electrode in Aqueous Electrolyte Solution , 1977 .

[83]  D. Haneman,et al.  Electrochemical Doping of TiO2 and Fe2 O 3 , 1977 .

[84]  J. G. Mavroides,et al.  Photoelectrolysis of water in cells with SrTiO3 anodes , 1976 .

[85]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[86]  E. Sato,et al.  Visible Light Response of Polycrystalline TiO2 Electrodes , 1980 .

[87]  M. Froelicher,et al.  Influence of Copper Addition on Optical Properties of TiO2 , 1979 .

[88]  T. Yoko,et al.  Preparation and photoelectrochemical properties of Ti1−xVxO2 solid solution thin film photoelectrodes with gradient bandgap , 1999 .

[89]  J. Herrmann,et al.  Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination , 1984 .

[90]  J. Augustynski,et al.  Photoelectrolysis of Water; Photoresponses of Nickel, Chromium and Zinc‐Doped Polycrystalline TiO2 Electrodes , 1980 .

[91]  V. Antonucci,et al.  Photoassisted decomposition of water over modified rutile electrodes , 1982 .

[92]  Brian D. James,et al.  Market penetration scenarios for fuel cell vehicles , 1998 .

[93]  A. Nozik,et al.  Photoelectrolysis of water using semiconducting TiO2 crystals , 1975, Nature.

[94]  H. Kozuka,et al.  Photoelectrochemical properties of sol–gel-derived anatase and rutile TiO2 films , 1998 .

[95]  L. Harvey,et al.  Solar-hydrogen electricity generation and global CO2 emission reduction , 1996 .

[96]  A. Ghosh,et al.  Transition-metal dopants for extending the response of titanate photoelectrolysis anodes , 1979 .

[97]  A. Ghosh,et al.  Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes , 1977 .

[98]  Oscar L. Malta,et al.  Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles , 1990 .

[99]  H. Gerischer Über den Ablauf von Redoxreaktionen an Metallen und an Halbleitern , 1960 .

[100]  T. Kutty,et al.  Photocatalytic activity of tin-substituted TiO2 in visible light , 1989 .

[101]  T. Kutty,et al.  Sacrificial water photocleavage using Nb-doped TiO2 fine particles under band gap irradiation , 1990 .

[102]  M. Okuda,et al.  Photoeffects on Semiconductor Ceramics Electrodes , 1976 .

[103]  M. Rȩkas,et al.  SEMICONDUCTING PROPERTIES OF UNDOPED TiO2 , 1997 .

[104]  I. Barin Thermochemical data of pure substances , 1989 .

[105]  Akira Fujishima,et al.  Hydrogen Production under Sunlight with an Electrochemical Photocell , 1975 .

[106]  Akira Fujishima,et al.  Photoelectrochemical Reactions at SrTiO3 Single Crystal Electrode , 1976 .

[107]  O. Srivastava,et al.  Preliminary investigations on the mixed oxide material TiO2In2O3 with regard to photoelectrolytic hydrogen production , 1991 .

[108]  P. Salvador Analysis of the physical properties of TiO2Be electrodes in the photoassisted oxidation of water , 1982 .

[109]  Wonyong Choi,et al.  The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics , 1994 .

[110]  P. Hagenmuller,et al.  Visible light response of Ni2+ and Nb4+ doped-polycristalline TiO2 anodes , 1981 .

[111]  T. E. Phillips,et al.  TiO/sub 2/-VO/sub 2/ alloys: reduced bandgap effects in the photoelectrolysis of water , 1982 .

[112]  A. Bard,et al.  Semiconductor Electrodes VI . A Photoelectrochemical Solar Cell Employing a Anode and Oxygen Cathode , 1976 .

[113]  P. Salvador The influence of niobium doping on the efficiency of n-TiO2 electrode in water photoelectrolysis , 1980 .

[114]  Y. Nakato,et al.  Photoeffects on the potentials of thin metal films on a n-TiO2 crystal wafer. The mechanism of semiconductor photocatalysts , 1982 .

[115]  E. Sato,et al.  Photoelectrochemical Properties of Polycrystalline TiO2 Doped with 3d Transition Metals , 1981 .

[116]  A. Hagfeldt,et al.  Electrochemical and photoelectrochemical investigation of new carboxylatobipyridine(bis-bipyridine)ruthenium(II) complexes for dye-sensitized TiO2 electrodes , 2000 .

[117]  J. Goodenough,et al.  Impurity levels of iron-group ions in TiO2(II) , 1979 .

[118]  O. Srivastava,et al.  Structural and photoelectrochemical studies of In2O3 modified TiO2 in regard to hydrogen production through photoelectrolysis , 1989 .

[119]  Janusz Nowotny,et al.  Science of ceramic interfaces II , 1994 .

[120]  K. Mizushima,et al.  Energy Levels of Iron Group Impurities in TiO 2 , 1972 .

[121]  C. Granqvist,et al.  Photoelectrochemical effect in dye sensitized, sputter deposited Ti oxide films: The role of thickness-dependent roughness and porosity , 1999 .

[122]  C. Stalder,et al.  Photoassisted Oxidation of Water at Beryllium‐Doped Polycrystalline TiO2 Electrodes , 1979 .