Effects of SiC or MoSi2 second phase on the oxide layers structure of HfB2-based composites

[1]  A. Yadav,et al.  Crystallization of ZrSiO4 from a SiO2–ZrO2 Binary System: The Concomitant Effects of Heat Treatment Temperature and TiO2 Additions , 2016 .

[2]  C. Carney,et al.  Comparison of the Oxidation Protection of HfB2 Based Ultra‐High Temperature Ceramics by the Addition of SiC or MoSi2. , 2015 .

[3]  G. Hilmas,et al.  Effects of transition metals on the oxidation behavior of ZrB2 ceramics , 2015 .

[4]  Lingling Wang,et al.  Formation mechanism and high temperature mechanical property characterization of SiC depletion layer in ZrB2/SiC ceramics , 2014 .

[5]  D. Sciti,et al.  Oxidation behavior of ZrB2 composites doped with various transition metal silicides , 2014 .

[6]  G. Hilmas,et al.  Effects of temperature and the incorporation of W on the oxidation of ZrB2 ceramics , 2014 .

[7]  V. Jayaram,et al.  Strength of hot pressed ZrB2–SiC composite after exposure to high temperatures (1000–1700 °C) , 2012 .

[8]  T. Parthasarathy,et al.  Oxidation Resistance of Hafnium Diboride Ceramics with Additions of Silicon Carbide and Tungsten Boride or Tungsten Carbide , 2011 .

[9]  G. Hilmas,et al.  Mechanical properties of sintered ZrB2–SiC ceramics , 2011 .

[10]  C. Carney Oxidation resistance of hafnium diboride—silicon carbide from 1400 to 2000 °C , 2009 .

[11]  D. Sciti,et al.  Oxidation behaviour of a pressureless sintered HfB2–MoSi2 composite , 2009 .

[12]  R. Rapp,et al.  Effects of Phase Change and Oxygen Permeability in Oxide Scales on Oxidation Kinetics of ZrB2 and HfB2 , 2009 .

[13]  J. Zaykoski,et al.  High‐Temperature Chemistry and Oxidation of ZrB2 Ceramics Containing SiC, Si3N4, Ta5Si3, and TaSi2 , 2008 .

[14]  A. Grandjean,et al.  Phase separation and crystallization of borosilicate glass enriched in MoO3, P2O5, ZrO2, CaO , 2008 .

[15]  Raffaele Savino,et al.  Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials , 2008 .

[16]  D. Sciti,et al.  Microstructure and Properties of Pressureless Sintered HfB2‐Based Composites with Additions of ZrB2 or HfC , 2007 .

[17]  J. Halloran,et al.  Convection Patterns in Liquid Oxide Films on ZrB2–SiC Composites Oxidized at a High Temperature , 2007 .

[18]  William G. Fahrenholtz,et al.  Thermodynamic Analysis of ZrB2–SiC Oxidation: Formation of a SiC‐Depleted Region , 2007 .

[19]  William G. Fahrenholtz,et al.  Oxidation of Zirconium Diboride–Silicon Carbide at 1500°C at a Low Partial Pressure of Oxygen , 2006 .

[20]  D. Sciti,et al.  Properties of a Pressureless‐Sintered ZrB2–MoSi2 Ceramic Composite , 2006 .

[21]  D. Sciti,et al.  Fabrication and properties of HfB_2–MoSi_2 composites produced by hot pressing and spark plasma sintering , 2006 .

[22]  D. Sciti,et al.  Fast Densification of Ultra‐High‐Temperature Ceramics by Spark Plasma Sintering , 2006 .

[23]  W. Fahrenholtz The ZrB2 Volatility Diagram , 2005 .

[24]  J. Zaykoski,et al.  Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience , 2004 .

[25]  Y. Kanno Thermodynamic and crystallographic discussion of the formation and dissociation of zircon , 1989 .

[26]  K. E. Spear,et al.  The B−Mo (Boron-Molybdenum) system , 1988 .

[27]  H. C. Graham,et al.  The High‐Temperature Oxidation Behavior of a HfB2 + 20 v / o SiC Composite , 1975 .

[28]  H. C. Graham,et al.  Thermogravi metric Study of the Oxidation of ZrB2 in the Temperature Range of 800° to 1500°C , 1971 .

[29]  J. Berkowitz‐Mattuck High‐Temperature Oxidation III . Zirconium and Hafnium Diborides , 1966 .

[30]  D. Wilder,et al.  High‐Temperature Oxidation of Molybdenum Disilicide , 1966 .

[31]  A. Elliot,et al.  High‐Temperature Behavior of MoSi2 and Mo5Si3 , 1964 .