Lignin-derived carbon material for electrochemical energy storage applications: Insight into the process-structure-properties-performance correlations

As increasing attention has been paid to applications of lignin-derived energy storage materials in the last decade, most studies pursue the improvement of electrochemical performance obtained from novel lignin sources, or structure and surface modifications of synthesized materials, while the study on the mechanisms of lignin thermochemical conversion is rare. This review emphasizes on establishing a process-structure-properties-performance correlation across multiple key aspects associated with valorizing lignin from a byproduct of biorefineries to high performance energy storage materials. Such information is the key to a rationally designed process for the low-cost production of carbon materials from lignin.

[1]  Ipcc Global Warming of 1.5°C , 2022 .

[2]  D. Qian,et al.  Engineering Lignin-Derived Carbon–Silicon Nanocomposite Electrodes: Insight into the Copyrolysis Mechanism and Process–Structure–Property–Performance Relationships , 2022, ACS Sustainable Chemistry & Engineering.

[3]  M. Stöcker,et al.  Recent Advances in Thermochemical Conversion of Biomass , 2021 .

[4]  Seth Debolt,et al.  Fractionation, Characterization, and Valorization of Lignin Derived from Engineered Plants , 2021 .

[5]  Dawei Li,et al.  Real-time measurements of electro-mechanical coupled deformation and mechanical properties of commercial graphite electrodes , 2020 .

[6]  A. Ragauskas,et al.  Mechanistic Insight into Lignin Slow Pyrolysis by Linking Pyrolysis Chemistry and Carbon Material Properties , 2020 .

[7]  Y. Boncli Kraft lignin , 2020, Catalysis from A to Z.

[8]  A. Ragauskas,et al.  Lignin‐derived electrochemical energy materials and systems , 2020, Biofuels, Bioproducts and Biorefining.

[9]  Shujun Wang,et al.  Laser-driven nanomaterials and laser-enabled nanofabrication for industrial applications , 2019, Industrial Applications of Nanomaterials.

[10]  A. Ragauskas,et al.  Linking lignin source with structural and electrochemical properties of lignin-derived carbon materials , 2018, RSC advances.

[11]  A. Ragauskas,et al.  Fractionation and characterization of lignin streams from unique high-lignin content endocarp feedstocks , 2018, Biotechnology for Biofuels.

[12]  Linping Wang,et al.  Iron oxide/lignin-based hollow carbon nanofibers nanocomposite as an application electrode materials for supercapacitors. , 2018, International journal of biological macromolecules.

[13]  Yang-Tse Cheng,et al.  Effects of adhesion and cohesion on the electrochemical performance and durability of silicon composite electrodes , 2018, Journal of Power Sources.

[14]  Dustin T. Abele,et al.  Sustainable Conversion of Lignocellulose to High-Purity, Highly Crystalline Flake Potato Graphite , 2018, ACS Sustainable Chemistry & Engineering.

[15]  Wantai Yang,et al.  High-Performance Biomass-Based Flexible Solid-State Supercapacitor Constructed of Pressure-Sensitive Lignin-Based and Cellulose Hydrogels. , 2018, ACS applied materials & interfaces.

[16]  S. Chun,et al.  MnO2-deposited lignin-based carbon nanofiber mats for application as electrodes in symmetric pseudocapacitors. , 2018, International journal of biological macromolecules.

[17]  Jingli Luo,et al.  Facile Preparation of Self-Standing Hierarchical Porous Nitrogen-Doped Carbon Fibers for Supercapacitors from Plant Protein–Lignin Electrospun Fibers , 2018, ACS omega.

[18]  Jaewook Shin,et al.  Agglomeration Mechanism and a Protective Role of Al2O3 for Prolonged Cycle Life of Si Anode in Lithium-Ion Batteries , 2018 .

[19]  Xingcheng Xiao,et al.  Mechanical Property Evolution of Silicon Composite Electrodes Studied by Environmental Nanoindentation , 2018 .

[20]  Cebolenkosi Mbonane Laser-pyrolysis and flammability testing of graphite flame-retarded polyethylene , 2018 .

[21]  Jun Wang,et al.  Three-dimensional hierarchical and interconnected honeycomb-like porous carbon derived from pomelo peel for high performance supercapacitors , 2018 .

[22]  Xiaoyun Li,et al.  Lignin as a green reductant and morphology directing agent in the fabrication of 3D graphene-based composites for high-performance supercapacitors , 2017 .

[23]  Yan Jin,et al.  Challenges and Recent Progress in the Development of Si Anodes for Lithium‐Ion Battery , 2017 .

[24]  Ying-Ying Zhang,et al.  Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors , 2017 .

[25]  T. Chen,et al.  High performance binder-free SiO x /C composite LIB electrode made of SiO x and lignin , 2017 .

[26]  Ryan G. Smith,et al.  Understanding Low-Pressure Hydropyrolysis of Lignin Using Deuterated Sodium Formate , 2017 .

[27]  Yan Wu One-step Preparation of Alkaline Lignin-based Activated Carbons with Different Activating Agents for Electric Double Layer Capacitor , 2017 .

[28]  X. Zhao,et al.  Biomass-derived carbon electrode materials for supercapacitors , 2017 .

[29]  Min Li,et al.  Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities , 2017 .

[30]  Tong-Qi Yuan,et al.  Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs) , 2017 .

[31]  Y. Yue,et al.  Graphene-like carbon sheet/Fe3O4 nanocomposites derived from soda papermaking black liquor for high performance lithium ion batteries , 2017 .

[32]  L. Giebeler,et al.  Softwood Lignin as a Sustainable Feedstock for Porous Carbons as Active Material for Supercapacitors Using an Ionic Liquid Electrolyte , 2017 .

[33]  Yang-Tse Cheng,et al.  A nanoindentation study of the viscoplastic behavior of pure lithium , 2017 .

[34]  L. Luo,et al.  Insights on the Mechanism of Na-Ion Storage in Soft Carbon Anode , 2017 .

[35]  Haiyan Zhang,et al.  Hierarchical S-doped porous carbon derived from by-product lignin for high-performance supercapacitors , 2017 .

[36]  O. Rios,et al.  Li-Ion Localization and Energetics as a Function of Anode Structure. , 2017, ACS applied materials & interfaces.

[37]  T. Chen,et al.  Unveiling the Critical Role of Polymeric Binders for Silicon Negative Electrodes in Lithium-Ion Full Cells. , 2017, ACS applied materials & interfaces.

[38]  V. Maroulas,et al.  Interfacial Li-ion localization in hierarchical carbon anodes , 2017 .

[39]  E. Borgarello,et al.  ACTIVE CARBON , 2017 .

[40]  T. Chen,et al.  Low-Temperature Treated Lignin as Both Binder and Conductive Additive for Silicon Nanoparticle Composite Electrodes in Lithium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[41]  A. M. Sharma,et al.  Lignin Valorization through Thermochemical Conversion: Comparison of Hardwood, Softwood and Herbaceous Lignin , 2016 .

[42]  José Rodríguez Mirasol,et al.  Asymmetric capacitors using lignin-based hierarchical porous carbons , 2016 .

[43]  O. Rojas,et al.  Mesoporous carbon soft-templated from lignin nanofiber networks: microphase separation boosts supercapacitance in conductive electrodes , 2016 .

[44]  Bryce J. Stokes,et al.  2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy , 2016 .

[45]  Xia Zhou,et al.  Interconnected Hierarchical Porous Carbon from Lignin-Derived Byproducts of Bioethanol Production for Ultra-High Performance Supercapacitors. , 2016, ACS applied materials & interfaces.

[46]  H. Gong,et al.  Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor , 2016 .

[47]  T. Chen,et al.  Binder-free lithium ion battery electrodes made of silicon and pyrolized lignin , 2016 .

[48]  Xian Jun Loh,et al.  Towards lignin-based functional materials in a sustainable world , 2016 .

[49]  Yong‐Sheng Hu,et al.  A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries , 2016 .

[50]  Wenli Zhang,et al.  Hierarchical porous carbon derived from lignin for high performance supercapacitor , 2015 .

[51]  Hanqing Yu,et al.  Thermochemical conversion of lignin to functional materials: a review and future directions , 2015 .

[52]  Wenli Zhang,et al.  Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance , 2015 .

[53]  J. Tu,et al.  Porous reduced graphene oxide sheet wrapped silicon composite fabricated by steam etching for lithium-ion battery application , 2015 .

[54]  Wenli Zhang,et al.  3 D Hierarchical Porous Carbon for Supercapacitors Prepared from Lignin through a Facile Template-Free Method. , 2015, ChemSusChem.

[55]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[56]  Y. Leconte,et al.  One-step synthesis of Si@C nanoparticles by laser pyrolysis: high-capacity anode material for lithium-ion batteries. , 2015, ACS applied materials & interfaces.

[57]  Kwang Ho Kim,et al.  Quantitative investigation of free radicals in bio-oil and their potential role in condensed-phase polymerization. , 2015, ChemSusChem.

[58]  Satish K. Nune,et al.  Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications. , 2015, ChemSusChem.

[59]  S. Kim,et al.  Microwave plasma carbonization for the fabrication of polyacrylonitrile-based carbon fiber , 2015 .

[60]  M. R. Palacín,et al.  Review-Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries , 2015 .

[61]  Jeyraj Selvaraj,et al.  Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation , 2015 .

[62]  N. Pan,et al.  High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes , 2014 .

[63]  C. Daniel,et al.  Monolithic Composite Electrodes Comprising Silicon Nanoparticles Embedded in Lignin‐derived Carbon Fibers for Lithium‐Ion Batteries , 2014 .

[64]  T. Proffen,et al.  Structural analysis of lignin-derived carbon composite anodes , 2014 .

[65]  V. Roddatis,et al.  Nanoporous carbons from natural lignin: study of structural–textural properties and application to organic-based supercapacitors , 2014 .

[66]  Anming Hu,et al.  Si-Based Anode Materials for Li-Ion Batteries: A Mini Review , 2014, Nano-Micro Letters.

[67]  A. Hu,et al.  Si-Based Anode Materials for Li-Ion Batteries: A Mini Review , 2014, Nano-micro letters.

[68]  W. Gu,et al.  Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide‐derived carbon, zeolite‐templated carbon, carbon aerogels, carbon nanotubes, onion‐like carbon, and graphene , 2014 .

[69]  Jian Shi,et al.  Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose , 2014, Proceedings of the National Academy of Sciences.

[70]  Kwang Ho Kim,et al.  Formation of phenolic oligomers during fast pyrolysis of lignin , 2014 .

[71]  Gerald A. Tuskan,et al.  Lignin Valorization: Improving Lignin Processing in the Biorefinery , 2014, Science.

[72]  E. Morallón,et al.  Electrochemical performance of hierarchical porous carbon materials obtained from the infiltration of lignin into zeolite templates. , 2014, ChemSusChem.

[73]  V. Thakur,et al.  Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review , 2014 .

[74]  O. Rios,et al.  Entropy-driven structure and dynamics in carbon nanocrystallites , 2014, Journal of Nanoparticle Research.

[75]  Yong Zhao,et al.  Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors , 2014 .

[76]  Jianming Zheng,et al.  Reduction mechanism of fluoroethylene carbonate for stable solid–electrolyte interphase film on silicon anode. , 2014, ChemSusChem.

[77]  J. Keum,et al.  Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[78]  Chaobin He,et al.  Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries. , 2013, ACS applied materials & interfaces.

[79]  P. Fan,et al.  Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications , 2013 .

[80]  M. Jaroniec,et al.  Colloidal templating synthesis and adsorption characteristics of microporous–mesoporous carbons from Kraft lignin , 2013 .

[81]  Haitao Huang,et al.  Development of plasma pyrolysis/gasification systems for energy efficient and environmentally sound waste disposal , 2013 .

[82]  K. Edström,et al.  Consequences of air exposure on the lithiated graphite SEI , 2013 .

[83]  B. Landi,et al.  Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). , 2013, Nano letters.

[84]  Meng Gu,et al.  Electronic origin for the phase transition from amorphous Li(x)Si to crystalline Li15Si4. , 2013, ACS nano.

[85]  Martin Pumera,et al.  Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. , 2013, ACS nano.

[86]  Dong Jin Lee,et al.  Silicon Nanofibrils on a Flexible Current Collector for Bendable Lithium‐Ion Battery Anodes , 2013 .

[87]  Meihua Jin,et al.  Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. , 2013, ACS nano.

[88]  Shuaixi Zhou Understanding lignin pyrolysis reactions on the formation of mono-phenols and pyrolytic lignin from lignocellulosic materials , 2013 .

[89]  Stefan Kaskel,et al.  KOH activation of carbon-based materials for energy storage , 2012 .

[90]  Chun-Zhu Li,et al.  Acid-catalysed reactions between methanol and the bio-oil from the fast pyrolysis of mallee bark , 2012 .

[91]  Jiayan Luo,et al.  Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes. , 2012, The journal of physical chemistry letters.

[92]  G. Cao,et al.  Nitrogen modification of highly porous carbon for improved supercapacitor performance , 2012 .

[93]  Brent H Shanks,et al.  Understanding the fast pyrolysis of lignin. , 2011, ChemSusChem.

[94]  D. Zhao,et al.  Carbon Materials for Chemical Capacitive Energy Storage , 2011, Advanced materials.

[95]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[96]  Jian Yu Huang,et al.  In situ TEM electrochemistry of anode materials in lithium ion batteries , 2011 .

[97]  Ping Liu,et al.  Two-dimensional nanocomposites based on chemically modified graphene. , 2011, Chemistry.

[98]  Norio Shinya,et al.  Graphene and nanostructured MnO2 composite electrodes for supercapacitors , 2011 .

[99]  Amartya Mukhopadhyay,et al.  Thin film graphite electrodes with low stress generation during Li-intercalation , 2011 .

[100]  Arthur J. Ragauskas,et al.  NMR Characterization of Pyrolysis Oils from Kraft Lignin , 2011 .

[101]  S. Kent Hoekman,et al.  Hydrothermal Carbonization (HTC) of Lignocellulosic Biomass , 2011 .

[102]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[103]  E. Tironi,et al.  A comparison of supercapacitor and high-power lithium batteries , 2010, Electrical Systems for Aircraft, Railway and Ship Propulsion.

[104]  Igor Luzinov,et al.  Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. , 2010, ACS applied materials & interfaces.

[105]  Chao Zhong,et al.  Flexible free-standing graphene-silicon composite film for lithium-ion batteries , 2010 .

[106]  Songlin Zuo,et al.  Effects of the heating history of impregnated lignocellulosic material on pore development during phosphoric acid activation , 2010 .

[107]  A. Bridgwater,et al.  Effect of the Temperature on the Composition of Lignin Pyrolysis Products , 2010 .

[108]  Francesco Cherubini,et al.  The biorefinery concept: Using biomass instead of oil for producing energy and chemicals , 2010 .

[109]  A. Funke,et al.  Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering , 2010 .

[110]  J. Tarascon,et al.  Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries , 2010 .

[111]  Nae-Lih Wu,et al.  A study on the interior microstructures of working Sn particle electrode of Li-ion batteries by in situ X-ray transmission microscopy , 2010 .

[112]  Xiao-Yan Zhao,et al.  Electric Double-Layer Capacitors from Activated Carbon Derived from Black Liquor , 2010 .

[113]  Pushkaraj R. Patwardhan Understanding the product distribution from biomass fast pyrolysis , 2010 .

[114]  Songlin Zuo,et al.  Effects of the crystallinity of lignocellulosic material on the porosity of phosphoric acid-activated carbon , 2009 .

[115]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[116]  Andreas Poullikkas,et al.  Overview of current and future energy storage technologies for electric power applications , 2009 .

[117]  Songlin Zuo,et al.  Significance of the carbonization of volatile pyrolytic products on the properties of activated carbons from phosphoric acid activation of lignocellulosic material , 2009 .

[118]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[119]  Oleg D. Neikov,et al.  Handbook of Non-Ferrous Metal Powders: Technologies and Applications , 2008 .

[120]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[121]  Jaephil Cho,et al.  Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. , 2008, Nano letters.

[122]  Suhas,et al.  Reactivity and porosity development during pyrolysis and physical activation in CO2 or steam of kraft and hydrolytic lignins , 2008 .

[123]  Iain S. Donnison,et al.  The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability , 2008 .

[124]  Haiping Yang,et al.  Characteristics of hemicellulose, cellulose and lignin pyrolysis , 2007 .

[125]  Iain S. Donnison,et al.  The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow , 2007 .

[126]  Jing Li,et al.  Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries , 2007 .

[127]  David Wexler,et al.  Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. , 2006, Angewandte Chemie.

[128]  Jing-ying Xie,et al.  Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries , 2006 .

[129]  Martin Winter,et al.  What Are Batteries, Fuel Cells, and Supercapacitors? (Chem. Rev. 2003, 104, 4245−4269. Published on the Web 09/28/2004.) , 2005 .

[130]  F. Bergius Beiträge zur Theorie der Kohleentstehung , 2005, Naturwissenschaften.

[131]  S. C. Zhang,et al.  Study of lithiated Nafion ionomer for lithium batteries , 2004 .

[132]  Anuradda Ganesh,et al.  Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products , 2004 .

[133]  Yung-Eun Sung,et al.  Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries , 2004 .

[134]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[135]  A. Ragauskas,et al.  Review of current and future softwood kraft lignin process chemistry , 2004 .

[136]  A. Bridgwater,et al.  Overview of Applications of Biomass Fast Pyrolysis Oil , 2004 .

[137]  Zonghai Chen,et al.  Comparison of PVDF and PVDF-TFE-P as Binders for Electrode Materials Showing Large Volume Changes in Lithium-Ion Batteries , 2003 .

[138]  C. Blasi,et al.  GC/MS characterization of liquids generated from low-temperature pyrolysis of wood , 2003 .

[139]  K. Jurewicz,et al.  Ammoxidation of active carbons for improvement of supercapacitor characteristics , 2003 .

[140]  S. K. Bej,et al.  Pyrolysis of Lignins: Experimental and Kinetics Studies , 2002 .

[141]  K. Jurewicz,et al.  Ammoxidation of brown coals for supercapacitors , 2002 .

[142]  S. K. Nema,et al.  Plasma pyrolysis of medical waste , 2002 .

[143]  C. Roy,et al.  Step-wise and one-step vacuum pyrolysis of birch-derived biomass to monitor the evolution of phenols , 2001 .

[144]  Christopher S. Johnson,et al.  7Li NMR study of intercalated lithium in curved carbon lattices , 2000 .

[145]  Ayhan Demirbas,et al.  Mechanisms of liquefaction and pyrolysis reactions of biomass , 2000 .

[146]  A. Bridgwater,et al.  Fast pyrolysis processes for biomass , 2000 .

[147]  B. Simon,et al.  Carbon materials for lithium-ion rechargeable batteries , 1999 .

[148]  J. Bimer Modified active carbons from precursors enriched with nitrogen functions: Sulfur removal capabilities , 1998 .

[149]  J. Rodríguez-Mirasol,et al.  Development of Porosity upon Chemical Activation of Kraft Lignin with ZnCl2 , 1997 .

[150]  Jeff Dahn,et al.  Correlation Between Lithium Intercalation Capacity and Microstructure in Hard Carbons , 1996 .

[151]  Tao Zheng,et al.  Mechanisms for Lithium Insertion in Carbonaceous Materials , 1995, Science.

[152]  F. Rodríguez-Reinoso,et al.  The use of steam and CO2 as activating agents in the preparation of activated carbons , 1995 .

[153]  A. Hatakka Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation , 1994 .

[154]  I. R. Harrison,et al.  Small-Angle X-ray Scattering (SAXS) in carbonized phenolic resins , 1994 .

[155]  H. Boehm.,et al.  Some aspects of the surface chemistry of carbon blacks and other carbons , 1994 .

[156]  Van Krevelen,et al.  Coal: Typology - Physics - Chemistry - Constitution , 1993 .

[157]  T. Wigmans,et al.  Industrial aspects of production and use of activated carbons , 1989 .

[158]  Hardcover,et al.  Carbon: Electrochemical and Physicochemical Properties , 1988 .

[159]  M. Roberts,et al.  Peat beneficiation by wet carbonization , 1987 .

[160]  Thomas A. Milne,et al.  Molecular characterization of the pyrolysis of biomass , 1987 .

[161]  A. Vargha,et al.  The effect of hydrothermal treatment on a Merseburg lignite , 1986 .

[162]  D. Clark,et al.  Some aspects of the surface chemistry of coal, kerogen and bitumen as revealed by ESCA , 1984 .

[163]  D. A. Nelson,et al.  Application of direct thermal liquefaction for the conversion of cellulosic biomass , 1984 .

[164]  David Evans,et al.  The brown-coal/water system: Part 3. Thermal dewatering of brown coal , 1972 .

[165]  D. Fanter,et al.  Laser pyrolysis of polymers , 1972 .

[166]  R. Franklin Crystallite growth in graphitizing and non-graphitizing carbons , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[167]  J. Evans V.— THE MEANINGS AND SYNONYMS OF PLUMBAGO. , 1908 .