A Unified Separation Theorem for Closed Sets in a Banach Space and Optimality Conditions for Vector Optimization
暂无分享,去创建一个
Xi Yin Zheng | Kung Fu Ng | K. Ng | X. Zheng
[1] Huynh van Ngai,et al. A Fuzzy Necessary Optimality Condition for Non-Lipschitz Optimization in Asplund Spaces , 2002, SIAM J. Optim..
[2] Qiji J. Zhu,et al. Hamiltonian Necessary Conditions for a Multiobjective Optimal Control Problem with Endpoint Constraints , 2000, SIAM J. Control. Optim..
[3] Xi Yin Zheng,et al. The Lagrange Multiplier Rule for Multifunctions in Banach Spaces , 2006, SIAM J. Optim..
[4] B. Mordukhovich. Variational analysis and generalized differentiation , 2006 .
[5] Johannes Jahn,et al. The Lagrange Multiplier Rule in Set-Valued Optimization , 1999, SIAM J. Optim..
[6] Xi Yin Zheng,et al. Calmness for L-Subsmooth Multifunctions in Banach Spaces , 2008, SIAM J. Optim..
[7] BORIS S. MORDUKHOVICH,et al. Necessary Suboptimality and Optimality Conditions via Variational Principles , 2002, SIAM J. Control. Optim..
[8] Boris S. Mordukhovich,et al. Relative Pareto minimizers for multiobjective problems: existence and optimality conditions , 2009, Math. Program..
[9] Xi Yin Zheng,et al. Unified approach to some geometric results in variational analysis , 2007 .
[10] B. Mordukhovich,et al. Nonsmooth sequential analysis in Asplund spaces , 1996 .
[11] Boris S. Mordukhovich,et al. An Extended Extremal Principle with Applications to Multiobjective Optimization , 2003, SIAM J. Optim..
[12] A. B. Németh. A nonconvex vector minimization problem , 1986 .
[13] B. Mordukhovich,et al. Extremal characterizations of asplund spaces , 1996 .
[14] V. Jeyakumar,et al. First-and Second-order Optimality Conditions for Convex Composite Multi-objective Optimization , 1997 .
[15] Xi Yin Zheng,et al. Linear Regularity for a Collection of Subsmooth Sets in Banach Spaces , 2008, SIAM J. Optim..
[16] J. Pang,et al. Minimizing and Stationary Sequences of Constrained Optimization Problems , 1998 .
[17] Johannes Jahn,et al. Vector optimization - theory, applications, and extensions , 2004 .
[18] Fabián Flores Bazán. Ideal, weakly efficient solutions for vector optimization problems , 2002, Math. Program..
[19] Qiji J. Zhu,et al. Multiobjective optimization problem with variational inequality constraints , 2003, Math. Program..
[20] H. Riahi,et al. Variational Methods in Partially Ordered Spaces , 2003 .
[21] Fabián Flores-Bazán. Ideal, weakly efficient solutions for vector optimization problems , 2002 .
[22] C. Tammer,et al. Theory of Vector Optimization , 2003 .
[23] Xiaoqi Yang,et al. First and Second-Order Optimality Conditions for Convex Composite Multiobjective Optimization , 1997 .
[24] C. Zalinescu,et al. Comparison of Existence Results for Efficient Points , 2000 .
[25] G. Jameson. Ordered Linear Spaces , 1970 .
[26] César Gutiérrez,et al. A Unified Approach and Optimality Conditions for Approximate Solutions of Vector Optimization Problems , 2006, SIAM J. Optim..
[27] Jonathan M. Borwein,et al. On the Existence of Pareto Efficient Points , 1983, Math. Oper. Res..
[28] D. Dentcheva,et al. On several concepts for ɛ-efficiency , 1994 .
[29] D. J. White,et al. Epsilon efficiency , 1986 .
[30] T. Q. Bao,et al. Variational principles for set-valued mappings with applications to multiobjective optimization , 2007 .
[31] Alberto Zaffaroni,et al. Degrees of Efficiency and Degrees of Minimality , 2003, SIAM J. Control. Optim..