A Unified Separation Theorem for Closed Sets in a Banach Space and Optimality Conditions for Vector Optimization

Using the technique of variational analysis and in terms of normal cones, we establish unified separation results for finitely many closed (not necessarily convex) sets in Banach spaces, which not only cover the existing nonconvex separation results and a classical convex separation theorem, but also recapture the approximate projection theorem. With help of the separation result for closed sets, we provide necessary and sufficient conditions for approximate Pareto solutions of constrained vector optimization problems. In particular, we extend some basic optimality results for approximate solutions of numerical optimization problems to the vector optimization setting.

[1]  Huynh van Ngai,et al.  A Fuzzy Necessary Optimality Condition for Non-Lipschitz Optimization in Asplund Spaces , 2002, SIAM J. Optim..

[2]  Qiji J. Zhu,et al.  Hamiltonian Necessary Conditions for a Multiobjective Optimal Control Problem with Endpoint Constraints , 2000, SIAM J. Control. Optim..

[3]  Xi Yin Zheng,et al.  The Lagrange Multiplier Rule for Multifunctions in Banach Spaces , 2006, SIAM J. Optim..

[4]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[5]  Johannes Jahn,et al.  The Lagrange Multiplier Rule in Set-Valued Optimization , 1999, SIAM J. Optim..

[6]  Xi Yin Zheng,et al.  Calmness for L-Subsmooth Multifunctions in Banach Spaces , 2008, SIAM J. Optim..

[7]  BORIS S. MORDUKHOVICH,et al.  Necessary Suboptimality and Optimality Conditions via Variational Principles , 2002, SIAM J. Control. Optim..

[8]  Boris S. Mordukhovich,et al.  Relative Pareto minimizers for multiobjective problems: existence and optimality conditions , 2009, Math. Program..

[9]  Xi Yin Zheng,et al.  Unified approach to some geometric results in variational analysis , 2007 .

[10]  B. Mordukhovich,et al.  Nonsmooth sequential analysis in Asplund spaces , 1996 .

[11]  Boris S. Mordukhovich,et al.  An Extended Extremal Principle with Applications to Multiobjective Optimization , 2003, SIAM J. Optim..

[12]  A. B. Németh A nonconvex vector minimization problem , 1986 .

[13]  B. Mordukhovich,et al.  Extremal characterizations of asplund spaces , 1996 .

[14]  V. Jeyakumar,et al.  First-and Second-order Optimality Conditions for Convex Composite Multi-objective Optimization , 1997 .

[15]  Xi Yin Zheng,et al.  Linear Regularity for a Collection of Subsmooth Sets in Banach Spaces , 2008, SIAM J. Optim..

[16]  J. Pang,et al.  Minimizing and Stationary Sequences of Constrained Optimization Problems , 1998 .

[17]  Johannes Jahn,et al.  Vector optimization - theory, applications, and extensions , 2004 .

[18]  Fabián Flores Bazán Ideal, weakly efficient solutions for vector optimization problems , 2002, Math. Program..

[19]  Qiji J. Zhu,et al.  Multiobjective optimization problem with variational inequality constraints , 2003, Math. Program..

[20]  H. Riahi,et al.  Variational Methods in Partially Ordered Spaces , 2003 .

[21]  Fabián Flores-Bazán Ideal, weakly efficient solutions for vector optimization problems , 2002 .

[22]  C. Tammer,et al.  Theory of Vector Optimization , 2003 .

[23]  Xiaoqi Yang,et al.  First and Second-Order Optimality Conditions for Convex Composite Multiobjective Optimization , 1997 .

[24]  C. Zalinescu,et al.  Comparison of Existence Results for Efficient Points , 2000 .

[25]  G. Jameson Ordered Linear Spaces , 1970 .

[26]  César Gutiérrez,et al.  A Unified Approach and Optimality Conditions for Approximate Solutions of Vector Optimization Problems , 2006, SIAM J. Optim..

[27]  Jonathan M. Borwein,et al.  On the Existence of Pareto Efficient Points , 1983, Math. Oper. Res..

[28]  D. Dentcheva,et al.  On several concepts for ɛ-efficiency , 1994 .

[29]  D. J. White,et al.  Epsilon efficiency , 1986 .

[30]  T. Q. Bao,et al.  Variational principles for set-valued mappings with applications to multiobjective optimization , 2007 .

[31]  Alberto Zaffaroni,et al.  Degrees of Efficiency and Degrees of Minimality , 2003, SIAM J. Control. Optim..