Application of Slime Mould Computing on Archaeological Research

Solving complex optimization problems by using biological computing substances, such as the plasmodium of Physarum polycephalum, is lately a commonly proposed technique. Moreover, as the successful evaluation of modern human-made motorways in several countries has been demonstrated, the same is expected when using that biological computer for transport networks built in historical time periods. To accelerate the computations a Cellular Automata model, proposed previously, that can approximate the computing abilities of the plasmodium has been used. Here the area of Balkans was considered, so as to evaluate the Roman road network built during the imperial period (1st century BC–4th century AD) which was of paramount significance in terms of maintaining the East territories of the Roman Empire under control. The results produced in the laboratory experiments and those delivered by the proposed model successfully approximate segments of the actual Roman road network. Exploring the efficiency of Physarum-based computers and bio-inspired algorithms can lead to an unconventional, interdisciplinary method that will be implemented in the field of archaeological research.

[1]  Andrew Adamatzky,et al.  Developing Proximity Graphs by Physarum polycephalum: Does the Plasmodium Follow the Toussaint Hierarchy? , 2009, Parallel Process. Lett..

[2]  Masashi Aono,et al.  Robust and emergent Physarum logical-computing. , 2004, Bio Systems.

[3]  Godfried T. Toussaint,et al.  Relative neighborhood graphs and their relatives , 1992, Proc. IEEE.

[4]  J. J. Wilkes,et al.  The Roman Danube: An Archaeological Survey , 2005, Journal of Roman Studies.

[5]  Ioannis G. Karafyllidis,et al.  A methodology for VLSI implementation of Cellular Automata algorithms using VHDL , 2001 .

[6]  Michail-Antisthenis I. Tsompanas,et al.  Evolving Transport Networks With Cellular Automata Models Inspired by Slime Mould , 2015, IEEE Transactions on Cybernetics.

[7]  Georgios Ch. Sirakoulis,et al.  Simulation of healthy and epileptiform Brain Activity using Cellular Automata , 2012, Int. J. Bifurc. Chaos.

[8]  A. Tero,et al.  Minimum-risk path finding by an adaptive amoebal network. , 2007, Physical review letters.

[9]  Georgios Ch. Sirakoulis,et al.  A CAD system for the construction and VLSI implementation of Cellular Automata algorithms using VHDL , 2003, Microprocess. Microsystems.

[10]  Jeff Jones,et al.  Influences on the formation and evolution of Physarum polycephalum inspired emergent transport networks , 2011, Natural Computing.

[11]  Konrad Miller Itineraria Romana : römische Reisewege an der Hand der Tabula peutingeriana , 1964 .

[12]  R. Ivanov DAS ROMISCHE VERTEIDIGUNGSSYSTEM AN DER UNTEREN DONAU ZWISCHEN DORTICUM UND DUROSTORUM (BULGARIEN) VON AUGUSTUS BIS MAURIKIOS , 1997 .

[13]  E. F. Codd,et al.  Cellular automata , 1968 .

[14]  Matthias Becker Design of fault tolerant networks with agent-based simulation of Physarum polycephalum , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[15]  Georgios Ch. Sirakoulis,et al.  A cellular automaton for the propagation of circular fronts and its applications , 2005, Eng. Appl. Artif. Intell..

[16]  Paul Collart,et al.  Une réfection de la « Via Egnatia » sous Trajan. , 1935 .

[17]  Andrew Adamatzky,et al.  Physarum in silicon: the Greek motorways study , 2014, Natural Computing.

[18]  R. Sokal,et al.  A New Statistical Approach to Geographic Variation Analysis , 1969 .

[19]  Georgios Ch. Sirakoulis,et al.  Cellular Automata-based Architecture for Cooperative Miniature Robots , 2013, J. Cell. Autom..

[20]  Tomohiro Shirakawa,et al.  On Simultaneous Construction of Voronoi Diagram and Delaunay Triangulation by Physarum polycephalum , 2009, Int. J. Bifurc. Chaos.

[21]  Tomohiro Shirakawa,et al.  An associative learning experiment using the plasmodium of Physarum polycephalum , 2011, Nano Commun. Networks.

[22]  Jaroslav Nesetril,et al.  Otakar Boruvka on minimum spanning tree problem Translation of both the 1926 papers, comments, history , 2001, Discret. Math..

[23]  Leif Isaksen,et al.  The application of network analysis to ancient transport geography: A case study of Roman Baetica , 2008 .

[24]  Andrew Adamatzky Advances in Physarum Machines Gates, Hulls, Mazes and Routing with Slime Mould , 2011, PARCO.

[25]  Godfried T. Toussaint,et al.  The relative neighbourhood graph of a finite planar set , 1980, Pattern Recognit..

[26]  Catherine Romiopoulou,et al.  Un nouveau milliaire de la Via Egnatia , 1974 .

[27]  Marie-Thérèse Raepsaet-Charlier Ronald Syme, The Provincial at Rome and Rome and The Balkans 80 BC - AD 14. Edited by Anthony Birley , 2001 .

[28]  S. Stephenson,et al.  Myxomycetes: A Handbook of Slime Molds , 1994 .

[29]  Paul Collart,et al.  Les militaires de la Via Egnatia , 1976 .

[30]  A. Dunn CONTINUITY AND CHANGE IN THE MACEDONIAN COUNTRYSIDE FROM GALLIENUS TO JUSTINIAN , 2004 .

[31]  Wolfgang Marwan,et al.  A first glimpse at the transcriptome of Physarum polycephalum , 2008, BMC Genomics.

[32]  Andrew Schumann,et al.  PHYSARUM SPATIAL LOGIC , 2011 .

[33]  Yannis A. Lolos,et al.  Via Egnatia after Egnatius: Imperial Policy and Inter-regional Contacts , 2007 .

[34]  D. Matula,et al.  Properties of Gabriel Graphs Relevant to Geographic Variation Research and the Clustering of Points in the Plane , 2010 .

[35]  T. Nakagaki,et al.  Path finding by tube morphogenesis in an amoeboid organism. , 2001, Biophysical chemistry.

[36]  Andrew Adamatzky,et al.  Physarum Machines: Computers from Slime Mould , 2010 .

[37]  Georgios Ch. Sirakoulis,et al.  An FPGA processor for modelling wildfire spreading , 2013, Math. Comput. Model..