Gradient Designs for Efficient Sodium Batteries

[1]  Junda Huang,et al.  Formation of NaF-rich Solid Electrolyte Interphase on Na Anode through Additive Induced Anion-enriched Structure of Na+ Solvation. , 2022, Angewandte Chemie.

[2]  Seokwoo Jeon,et al.  Three-Dimensional, Submicron Porous Electrode with a Density Gradient to Enhance Charge Carrier Transport. , 2022, ACS nano.

[3]  Xingguo Qi,et al.  Interfacial engineering to achieve an energy density of over 200 Wh kg−1 in sodium batteries , 2022, Nature Energy.

[4]  Guihua Yu,et al.  Gradient Design for High‐Energy and High‐Power Batteries , 2022, Advanced materials.

[5]  Haixia Li,et al.  Anion Reinforced Solvation for Gradient Inorganic-Rich Interphase Enables High-Rate and Stable Sodium Batteries. , 2022, Angewandte Chemie.

[6]  Hengxing Ji,et al.  Regulating Sodium Deposition through Gradiently-Graphitized Framework for Dendrite-Free Na Metal Anode. , 2022, Small.

[7]  Shu‐Hong Yu,et al.  Extremely fast-charging lithium ion battery enabled by dual-gradient structure design , 2022, Science advances.

[8]  J. Ni,et al.  Structurally Durable Bimetallic Alloy Anodes Enabled by Compositional Gradients , 2022, Advanced science.

[9]  L. Mai,et al.  Ion-Conductive Gradient Sodiophilic 3D Scaffold Induced Homogeneous Sodium Deposition for Highly Stable Sodium Metal Batteries , 2022, Nano Energy.

[10]  Yichun Wang,et al.  Rooting Zn into metallic Na bulk for energetic metal anode , 2022, Science China Materials.

[11]  Haixia Li,et al.  An MXene‐Based Metal Anode with Stepped Sodiophilic Gradient Structure Enables a Large Current Density for Rechargeable Na–O2 Batteries , 2022, Advanced materials.

[12]  Hui-Xia Zhao,et al.  Unraveling Anionic Redox for Sodium Layered Oxide Cathodes: Breakthroughs and Perspectives , 2021, Advanced materials.

[13]  Yang‐Kook Sun,et al.  Microstructure-optimized concentration-gradient NCM cathode for long-life Li-ion batteries , 2021, Materials Today.

[14]  Jang‐Kyo Kim,et al.  NaF-rich Solid Electrolyte Interphase for Dendrite-free Sodium Metal Batteries , 2021, Energy Storage Materials.

[15]  J. Popovic The importance of electrode interfaces and interphases for rechargeable metal batteries , 2021, Nature Communications.

[16]  Chenguo Hu,et al.  Gradient SEI layer induced by liquid alloy electrolyte additive for high rate lithium metal battery , 2021 .

[17]  Enyue Zhao,et al.  Multiple Influences of Nickel Concentration Gradient Structure and Yttrium Element Substitution on the Structural and Electrochemical Performances of the NaNi0.25Mn0.25Fe0.5O2 Cathode Material , 2021, The Journal of Physical Chemistry C.

[18]  Hailiang Wang,et al.  Mechanistic Insights into Fast Charging and Discharging of the Sodium Metal Battery Anode: A Comparison with Lithium. , 2021, Journal of the American Chemical Society.

[19]  Yan Wang,et al.  Fracture predictions based on a coupled chemo-mechanical model with strain gradient plasticity theory for film electrodes of Li-ion batteries , 2021, Engineering Fracture Mechanics.

[20]  Yaxiang Lu,et al.  Fundamentals, status and promise of sodium-based batteries , 2021, Nature Reviews Materials.

[21]  A. West,et al.  From Fundamental Understanding to Engineering Design of High‐Performance Thick Electrodes for Scalable Energy‐Storage Systems , 2021, Advanced materials.

[22]  D. Zhao,et al.  Inorganic-organic competitive coating strategy derived uniform hollow gradient-structured ferroferric oxide-carbon nanospheres for ultra-fast and long-term lithium-ion battery , 2021, Nature Communications.

[23]  J. Ni,et al.  Electrospun Materials for Batteries Moving Beyond Lithium-Ion Technologies , 2021, Electrochemical Energy Reviews.

[24]  Hengxing Ji,et al.  Guiding Sodium Deposition through a Sodiophobic–Sodiophilic Gradient Interfacial Layer for Highly Stable Sodium Metal Anodes , 2021 .

[25]  Q. Ma,et al.  A robust, highly reversible, mixed conducting sodium metal anode. , 2021, Science bulletin.

[26]  S. Dou,et al.  Stable Sodium Metal Anode Enabled by an Interface Protection Layer Rich in Organic Sulfide Salt. , 2020, Nano letters.

[27]  D. Hall,et al.  Prospects for lithium-ion batteries and beyond—a 2030 vision , 2020, Nature Communications.

[28]  F. Pan,et al.  Gradient electrodeposition enables high-throughput fabrication and screening of alloy anodes for high-energy lithium-ion batteries , 2020 .

[29]  Chenglong Zhao,et al.  Rational design of layered oxide materials for sodium-ion batteries , 2020, Science.

[30]  K. Abraham How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts? , 2020 .

[31]  Huan Wang,et al.  Tunable MXene-Derived 1D/2D Hybrid Nanoarchitectures as a Stable Matrix for Dendrite-Free and Ultrahigh Capacity Sodium Metal Anode. , 2020, Nano letters.

[32]  Guozhao Fang,et al.  Tuning crystal structure and redox potential of NASICON-type cathodes for sodium-ion batteries , 2020, Nano Research.

[33]  Huajian Gao,et al.  Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys , 2020, Nature Reviews Materials.

[34]  Tongchao Liu,et al.  Durian-Inspired Design of Bismuth-Antimony Alloy Arrays for Robust Sodium Storage. , 2020, ACS nano.

[35]  Liang Li,et al.  Theoretical Simulation and Modeling of Three-Dimensional Batteries , 2020 .

[36]  Yifei Yuan,et al.  Three-Dimensional Microbatteries beyond Lithium Ion , 2020, Matter.

[37]  Qian Sun,et al.  Gradiently Sodiated Alucone as an Interfacial Stabilizing Strategy for Solid‐State Na Metal Batteries , 2020, Advanced Functional Materials.

[38]  L. Li,et al.  Rooting binder-free tin nanoarrays into copper substrate via tin-copper alloying for robust energy storage , 2020, Nature Communications.

[39]  Yunhui Huang,et al.  Embedding a percolated dual-conductive skeleton with high sodiophilicity toward stable sodium metal anodes , 2020 .

[40]  Liang Chen,et al.  A Low Strain Reticular Sodium Manganese Oxide as an Ultrastable Cathode for Sodium-Ion Batteries. , 2020, ACS applied materials & interfaces.

[41]  J. Ni,et al.  Dual‐Doped Hematite Nanorod Arrays on Carbon Cloth as a Robust and Flexible Sodium Anode , 2020, Advanced Functional Materials.

[42]  R. Biswas,et al.  Site-Specific Sodiation Mechanisms of Selenium in Microporous Carbon Host. , 2019, Nano letters.

[43]  J. Réthoré,et al.  Concentration-Gradient Prussian Blue Cathodes for Na-Ion Batteries , 2019, ACS Energy Letters.

[44]  Yi Cui,et al.  Energy storage: The future enabled by nanomaterials , 2019, Science.

[45]  Yaxiang Lu,et al.  2019 Nobel Prize for the Li-Ion Batteries and New Opportunities and Challenges in Na-Ion Batteries , 2019, ACS Energy Letters.

[46]  Bingqing Chen,et al.  Additive manufacturing of functionally graded materials: A review , 2019, Materials Science and Engineering: A.

[47]  Eunsu Paek,et al.  Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. , 2019, Chemical reviews.

[48]  De‐Yin Wu,et al.  Stable Na Plating and Stripping Electrochemistry Promoted by In Situ Construction of an Alloy‐Based Sodiophilic Interphase , 2019, Advanced materials.

[49]  R. Mücke,et al.  Microstructure‐Controlled Ni‐Rich Cathode Material by Microscale Compositional Partition for Next‐Generation Electric Vehicles , 2019, Advanced Energy Materials.

[50]  C. Yoon,et al.  Capacity Degradation Mechanism and Cycling Stability Enhancement of AlF3-Coated Nanorod Gradient Na[Ni0.65Co0.08Mn0.27]O2 Cathode for Sodium-Ion Batteries. , 2018, ACS nano.

[51]  Shao‐hua Luo,et al.  Novel P2-type concentration-gradient Na0.67Ni0.167Co0.167Mn0.67O2 modified by Mn-rich surface as cathode material for sodium ion batteries , 2018, Journal of Power Sources.

[52]  X. Sun,et al.  High Tap Density Co and Ni Containing P2‐Na0.66MnO2 Buckyballs: A Promising High Voltage Cathode for Stable Sodium‐Ion Batteries , 2018, Advanced Functional Materials.

[53]  C. Delmas,et al.  Sodium and Sodium‐Ion Batteries: 50 Years of Research , 2018 .

[54]  Jun Lu,et al.  Phosphorus: An Anode of Choice for Sodium-Ion Batteries , 2018 .

[55]  Hanmei Tang,et al.  Understanding the Electrochemical Mechanisms Induced by Gradient Mg2+ Distribution of Na-Rich Na3+xV2–xMgx(PO4)3/C for Sodium Ion Batteries , 2018 .

[56]  Feixiang Wu,et al.  Regulation of Breathing CuO Nanoarray Electrodes for Enhanced Electrochemical Sodium Storage , 2018 .

[57]  J. Goodenough How we made the Li-ion rechargeable battery , 2018 .

[58]  Yifei Yuan,et al.  Boosting Sodium Storage in TiO2 Nanotube Arrays through Surface Phosphorylation , 2018, Advanced materials.

[59]  Liang Li,et al.  Self‐Supported 3D Array Electrodes for Sodium Microbatteries , 2018 .

[60]  Ya‐Xia Yin,et al.  Ti‐Substituted NaNi0.5Mn0.5‐xTixO2 Cathodes with Reversible O3−P3 Phase Transition for High‐Performance Sodium‐Ion Batteries , 2017, Advanced materials.

[61]  J. Ni,et al.  Bio-inspired engineering of Bi2S3-PPy yolk-shell composite for highly durable lithium and sodium storage , 2017 .

[62]  Chong Seung Yoon,et al.  Compositionally Graded Cathode Material with Long‐Term Cycling Stability for Electric Vehicles Application , 2016 .

[63]  Chong Seung Yoon,et al.  Novel Cathode Materials for Na‐Ion Batteries Composed of Spoke‐Like Nanorods of Na[Ni0.61Co0.12Mn0.27]O2 Assembled in Spherical Secondary Particles , 2016 .

[64]  Yi Cui,et al.  The path towards sustainable energy. , 2016, Nature materials.

[65]  Lin Xu,et al.  General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis , 2015, Nature Communications.

[66]  Yang-Tse Cheng,et al.  Electrode Side Reactions, Capacity Loss and Mechanical Degradation in Lithium-Ion Batteries , 2015 .

[67]  Ilias Belharouak,et al.  Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries , 2015, Nature Communications.

[68]  A. Kidane,et al.  Modeling functionally graded materials containing multiple heterogeneities , 2014 .

[69]  Marco Stampanoni,et al.  Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries , 2013, Science.

[70]  C. Delmas,et al.  P2-Na(x)VO2 system as electrodes for batteries and electron-correlated materials. , 2013, Nature materials.

[71]  Jian Yu Huang,et al.  Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. , 2012, Nano letters.

[72]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[73]  A. Sastry,et al.  Numerical Simulation of Stress Evolution in Lithium Manganese Dioxide Particles due to Coupled Phase Transition and Intercalation , 2011 .

[74]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[75]  M. Armand,et al.  Building better batteries , 2008, Nature.

[76]  W. Shyy,et al.  Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles , 2007 .

[77]  Yang-Kook Sun,et al.  Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. , 2005, Journal of the American Chemical Society.