Transparent-Conductive-Oxide-Free Front Contacts for High Efficiency Silicon Heterojunction Solar Cells

In order to compensate the insufficient conductance of heterojunction thin films, transparent conductive oxides (TCO) have been used for decades in both-sides contacted crystalline silicon heterojunction (SHJ) solar cells to provide lateral conduction for efficient carrier collection. In this work, we substitute the TCO layers by utilizing the lateral conduction of c-Si absorber, thereby enabling a TCO-free design. A series resistance of 0.32 Ωcm2 and a fill factor of 80.7% were measured for a TCO-free back-junction SHJ solar cell with a conventional finger pitch of 1.8 mm, thereby proving that relying on lateral conduction in the c-Si bulk is compatible with low series resistances. Achieving high efficiencies in SHJ solar cells with TCO-free front contacts requires suppressing deterioration of the passivation quality induced by direct metal-a-Si:H contacts and in-diffusion of metal into the a-Si:H layer. We show that an ozone treatment at the a-Si:H/metal interface suppresses the metal diffusion and improves the passivation without increasing the contact resistivity. SHJ solar cells with TCO-free front contacts and ozone treatment achieve efficiencies of > 22%.