Topographic organization of the human subcortex unveiled with functional connectivity gradients

Understanding the topographic organization of the human brain remains a major goal in neuroscience. Brain atlases are fundamental to this goal, yet many contemporary human atlases cover only the cerebral cortex, leaving the subcortex a terra incognita. We revealed the complex topographic organization of the human subcortex by disambiguating smooth connectivity gradients from discrete areal boundaries in resting-state fMRI data acquired from more than 1000 healthy adults. This unveiled four scales of subcortical organization, recapitulating well-known anatomical nuclei at the coarsest scale and delineating 27 new bilateral regions at the finest. Ultra-high field strength fMRI corroborated and extended this organizational structure, enabling delineation of finer subdivisions of hippocampus and amygdala, while task-evoked fMRI revealed a subtle reorganization of subcortical topography in response to changing cognitive demands. A new subcortical atlas was delineated, personalized to account for individual connectivity differences and utilized to uncover reproducible relationships between subcortical connectivity and individual variation in human behaviors. Linking cortical networks to subcortical regions recapitulated a task-positive to task-negative organizational axis. The new atlas enables holistic connectome mapping and characterization of cortico-subcortical connectivity.

[1]  Aapo Hyvärinen,et al.  Validating the independent components of neuroimaging time series via clustering and visualization , 2004, NeuroImage.

[2]  Richard F. Betzel,et al.  Linked dimensions of psychopathology and connectivity in functional brain networks , 2017, bioRxiv.

[3]  Elizabeth Jefferies,et al.  Situating the default-mode network along a principal gradient of macroscale cortical organization , 2016, Proceedings of the National Academy of Sciences.

[4]  David A. Freedman,et al.  A Nonstochastic Interpretation of Reported Significance Levels , 1983 .

[5]  Y. Benjamini Discovering the false discovery rate , 2010 .

[6]  Edward T. Bullmore,et al.  Schizophrenia, neuroimaging and connectomics , 2012, NeuroImage.

[7]  J. Changeux,et al.  Nicotine reverses hypofrontality in animal models of addiction and schizophrenia , 2017, Nature Medicine.

[8]  Edward T. Bullmore,et al.  Network-based statistic: Identifying differences in brain networks , 2010, NeuroImage.

[9]  Marián Boguñá,et al.  Extracting the multiscale backbone of complex weighted networks , 2009, Proceedings of the National Academy of Sciences.

[10]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[11]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[12]  Andrea Lancichinetti,et al.  Detecting the overlapping and hierarchical community structure in complex networks , 2008, 0802.1218.

[13]  A. MacAskill,et al.  Subcellular connectivity underlies pathway-specific signaling in the nucleus accumbens , 2012, Nature Neuroscience.

[14]  Ben D. Fulcher,et al.  An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI , 2017, NeuroImage.

[15]  Steen Moeller,et al.  Tradeoffs in pushing the spatial resolution of fMRI for the 7T Human Connectome Project , 2017, NeuroImage.

[16]  Carl-Fredrik Westin,et al.  Automatic Tractography Segmentation Using a High-Dimensional White Matter Atlas , 2007, IEEE Transactions on Medical Imaging.

[17]  Timothy O. Laumann,et al.  Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations. , 2016, Cerebral cortex.

[18]  Ben Jeurissen,et al.  Diffusion MRI fiber tractography of the brain , 2019, NMR in biomedicine.

[19]  Simon B. Eickhoff,et al.  An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data , 2013, NeuroImage.

[20]  Koen V. Haak,et al.  Functional corticostriatal connection topographies predict goal directed behaviour in humans , 2017, Nature Human Behaviour.

[21]  Julia M. Huntenburg,et al.  Large-Scale Gradients in Human Cortical Organization , 2018, Trends in Cognitive Sciences.

[22]  C. Keysers,et al.  Probabilistic tractography recovers a rostrocaudal trajectory of connectivity variability in the human insular cortex , 2011, Human brain mapping.

[23]  G. Percheron,et al.  A Golgi analysis of the primate globus pallidus. I. Inconstant processes of large neurons, other neuronal types, and afferent axons , 1984, The Journal of comparative neurology.

[24]  Thomas E. Nichols,et al.  A positive-negative mode of population covariation links brain connectivity, demographics and behavior , 2015, Nature Neuroscience.

[25]  Ben D. Fulcher,et al.  Core and matrix thalamic sub-populations relate to spatio-temporal cortical connectivity gradients , 2020, NeuroImage.

[26]  Stephen M. Smith,et al.  Multi-level block permutation , 2015, NeuroImage.

[27]  Abraham Z. Snyder,et al.  Function in the human connectome: Task-fMRI and individual differences in behavior , 2013, NeuroImage.

[28]  M. P. van den Heuvel,et al.  Exploring the brain network: a review on resting-state fMRI functional connectivity. , 2010, European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology.

[29]  Jörn Diedrichsen,et al.  Functional boundaries in the human cerebellum revealed by a multi-domain task battery , 2019, Nature Neuroscience.

[30]  Evan M. Gordon,et al.  Local-Global Parcellation of the Human Cerebral Cortex From Intrinsic Functional Connectivity MRI , 2017, bioRxiv.

[31]  Hallvard Røe Evensmoen,et al.  Long-axis specialization of the human hippocampus , 2013, Trends in Cognitive Sciences.

[32]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[33]  Katrin Amunts,et al.  Multimodal Parcellations and Extensive Behavioral Profiling Tackling the Hippocampus Gradient. , 2019, Cerebral cortex.

[34]  M. Frank,et al.  From reinforcement learning models to psychiatric and neurological disorders , 2011, Nature Neuroscience.

[35]  G. Chiara,et al.  Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs , 1996, Nature.

[36]  G. Percheron,et al.  A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato‐pallidal complex , 1984, The Journal of comparative neurology.

[37]  T. Sejnowski,et al.  Perspectives on cognitive neuroscience. , 1988, Science.

[38]  Max C. Keuken,et al.  Towards a mechanistic understanding of the human subcortex , 2016, Nature Reviews Neuroscience.

[39]  Evan M. Gordon,et al.  Precision Functional Mapping of Individual Human Brains , 2017, Neuron.

[40]  Jonathan D. Power,et al.  Multi-task connectivity reveals flexible hubs for adaptive task control , 2013, Nature Neuroscience.

[41]  Marcel van Gerven,et al.  Probabilistic model-based functional parcellation reveals a robust, fine-grained subdivision of the striatum , 2015, NeuroImage.

[42]  M. Bruchas,et al.  A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell , 2019, Neuron.

[43]  Steen Moeller,et al.  ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging , 2014, NeuroImage.

[44]  Carl-Fredrik Westin,et al.  Geometrically constrained two-tensor model for crossing tracts in DWI. , 2006, Magnetic resonance imaging.

[45]  Stephen M. Smith,et al.  Permutation inference for the general linear model , 2014, NeuroImage.

[46]  Dustin Scheinost,et al.  Task-induced brain state manipulation improves prediction of individual traits , 2018, Nature Communications.

[47]  Simon B Eickhoff,et al.  Imaging-based parcellations of the human brain , 2018, Nature Reviews Neuroscience.

[48]  Xi-Nian Zuo,et al.  Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion. , 2019, Cerebral cortex.

[49]  Mert R. Sabuncu,et al.  The influence of head motion on intrinsic functional connectivity MRI , 2012, NeuroImage.

[50]  Jonathan D. Power,et al.  Intrinsic and Task-Evoked Network Architectures of the Human Brain , 2014, Neuron.

[51]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[52]  S. Haber,et al.  The Reward Circuit: Linking Primate Anatomy and Human Imaging , 2010, Neuropsychopharmacology.

[53]  Fernand Meyer,et al.  Topographic distance and watershed lines , 1994, Signal Process..

[54]  D. Lodge,et al.  Convergent Inputs from the Hippocampus and Thalamus to the Nucleus Accumbens Regulate Dopamine Neuron Activity , 2018, The Journal of Neuroscience.

[55]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[56]  Damien A. Fair,et al.  Defining functional areas in individual human brains using resting functional connectivity MRI , 2008, NeuroImage.

[57]  Wolfgang M Pauli,et al.  Descriptor : A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei , 2018 .

[58]  Carl-Fredrik Westin,et al.  A Bayesian approach for stochastic white matter tractography , 2006, IEEE Transactions on Medical Imaging.

[59]  The nature of dopamine dysfunction in schizophrenia and what this means for treatment , 2013 .

[60]  W. Slikker,et al.  Fetal and adolescent nicotine administration: effects on CNS serotonergic systems , 2001, Brain Research.

[61]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[62]  Danielle S. Bassett,et al.  Cognitive Network Neuroscience , 2015, Journal of Cognitive Neuroscience.

[63]  L. Jacobsen,et al.  Abnormal Hippocampal Neurochemistry in Smokers: Evidence From Proton Magnetic Resonance Spectroscopy at 3 T , 2007, Journal of clinical psychopharmacology.

[64]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[65]  Ye Tian,et al.  Characterizing the functional connectivity diversity of the insula cortex: Subregions, diversity curves and behavior , 2018, NeuroImage.

[66]  B. Forstmann,et al.  Comparing functional MRI protocols for small, iron‐rich basal ganglia nuclei such as the subthalamic nucleus at 7 T and 3 T , 2017, Human brain mapping.

[67]  Reinder Vos de Wael,et al.  Anatomical and microstructural determinants of hippocampal subfield functional connectome embedding , 2018, Proceedings of the National Academy of Sciences.

[68]  J. Leon,et al.  A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors , 2005, Schizophrenia Research.

[69]  D. Louis Collins,et al.  Brain templates and atlases , 2012, NeuroImage.

[70]  Meinard Müller,et al.  Information retrieval for music and motion , 2007 .

[71]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[72]  Max C. Keuken,et al.  A perspective on terra incognita: uncovering the neuroanatomy of the human subcortex , 2013, Front. Neuroanat..

[73]  Wolfgang M. Pauli,et al.  Regional specialization within the human striatum for diverse psychological functions , 2016, Proceedings of the National Academy of Sciences.

[74]  Michael Breakspear,et al.  Graph analysis of the human connectome: Promise, progress, and pitfalls , 2013, NeuroImage.

[75]  Mark W. Woolrich,et al.  Resting-state fMRI in the Human Connectome Project , 2013, NeuroImage.

[76]  L. Cocchi,et al.  Personalized Transcranial Magnetic Stimulation in Psychiatry. , 2018, Biological psychiatry. Cognitive neuroscience and neuroimaging.

[77]  Michael W. Cole,et al.  Mapping the human brain's cortical-subcortical functional network organization , 2018, NeuroImage.

[78]  K. Amunts,et al.  Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps , 2005, Anatomy and Embryology.

[79]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[80]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[81]  Amin Karbasi,et al.  There is no single functional atlas even for a single individual: Functional parcel definitions change with task , 2019, NeuroImage.

[82]  Satrajit S. Ghosh,et al.  Functional gradients of the cerebellum , 2018, bioRxiv.

[83]  M. Chun,et al.  Functional connectome fingerprinting: Identifying individuals based on patterns of brain connectivity , 2015, Nature Neuroscience.

[84]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[85]  Dan J Stein,et al.  Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex , 2016, Brain Imaging and Behavior.

[86]  M. Mallar Chakravarty,et al.  Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol , 2015, NeuroImage.

[87]  Steen Moeller,et al.  The Human Connectome Project's neuroimaging approach , 2016, Nature Neuroscience.

[88]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[89]  J. Weickert,et al.  Visualization and Processing of Tensor Fields (Mathematics and Visualization) , 2005 .

[90]  E. Lein,et al.  Functional organization of the hippocampal longitudinal axis , 2014, Nature Reviews Neuroscience.

[91]  André Zugman,et al.  Commentary: Functional connectome fingerprint: identifying individuals using patterns of brain connectivity , 2017, Front. Hum. Neurosci..

[92]  Stephen M. Smith,et al.  Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data , 2017, NeuroImage.

[93]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[94]  G. Shepherd Corticostriatal connectivity and its role in disease , 2013, Nature Reviews Neuroscience.

[95]  Benedikt A. Poser,et al.  Using multi-echo simultaneous multi-slice (SMS) EPI to improve functional MRI of the subcortical nuclei of the basal ganglia at ultra-high field (7T) , 2017, NeuroImage.

[96]  Daniel C. Alexander,et al.  An Introduction to Computational Diffusion MRI: the Diffusion Tensor and Beyond , 2006, Visualization and Processing of Tensor Fields.

[97]  Rubita Sudirman,et al.  Dynamic time warping , 2008 .

[98]  R. Buckner,et al.  The organization of the human striatum estimated by intrinsic functional connectivity. , 2012, Journal of neurophysiology.

[99]  Koen V. Haak,et al.  Connectopic mapping with resting-state fMRI , 2016, NeuroImage.

[100]  S. Haber,et al.  Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin‐D28k , 1996, The Journal of comparative neurology.

[101]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[102]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[103]  David C Van Essen,et al.  The impact of traditional neuroimaging methods on the spatial localization of cortical areas , 2018, Proceedings of the National Academy of Sciences.

[104]  M. V. D. Heuvel,et al.  Exploring the brain network: A review on resting-state fMRI functional connectivity , 2010, European Neuropsychopharmacology.

[105]  Ludovica Griffanti,et al.  Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers , 2014, NeuroImage.

[106]  Yu Zhang,et al.  The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture , 2016, Cerebral cortex.