ROME/REA: A Gravitational Microlensing Search for Exoplanets Beyond the Snow Line on a Global Network of Robotic Telescopes

Planet population synthesis models predict an abundance of planets with semi-major axes between 1-10 au, yet they lie at the edge of the detection limits of most planet finding techniques. Discovering these planets and studying their distribution is critical to understanding the physical processes that drive planet formation. ROME/REA is a gravitational microlensing project whose main science driver is to discover exoplanets in the cold outer regions of planetary systems. To achieve this, it uses a novel approach combining a multi-band survey with reactive follow-up observations, exploiting the unique capabilities of the Las Cumbres Observatory (LCO) global network of robotic telescopes combined with a Target and Observation Manager (TOM) system. We present the main science objectives and a technical overview of the project, including initial results.

[1]  R. A. Street,et al.  FREQUENCY OF SOLAR-LIKE SYSTEMS AND OF ICE AND GAS GIANTS BEYOND THE SNOW LINE FROM HIGH-MAGNIFICATION MICROLENSING EVENTS IN 2005–2008 , 2010, 1001.0572.

[2]  Sotiria Lampoudi,et al.  An Integer Linear Programming Solution to the Telescope Network Scheduling Problem , 2015, ICORES.

[3]  E. Bachelet,et al.  pyLIMA: An Open-source Package for Microlensing Modeling. I. Presentation of the Software and Analysis of Single-lens Models , 2017, 1709.08704.

[4]  Portugal,et al.  Statistical properties of exoplanets - I. The period distribution: Constraints for the migration scenario , 2003, astro-ph/0306049.

[5]  B. Scott Gaudi,et al.  Microlensing Surveys for Exoplanets , 2012 .

[6]  B. J. Shappee,et al.  First Resolution of Microlensed Images , 2018, The Astrophysical Journal.

[7]  D. Hogg,et al.  EXOPLANET POPULATION INFERENCE AND THE ABUNDANCE OF EARTH ANALOGS FROM NOISY, INCOMPLETE CATALOGS , 2014, 1406.3020.

[8]  Philip J. Armitage,et al.  Dynamics of Protoplanetary Disks , 2010, 1011.1496.

[9]  C. H. Ling,et al.  An analysis of binary microlensing event OGLE-2015-BLG-0060 , 2019, Monthly Notices of the Royal Astronomical Society.

[10]  D. Maoz,et al.  RoboTAP: Target priorities for robotic microlensing observations , 2017, 1710.00523.

[11]  Las Cumbres Observatory Global Telescope Network,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA , 2012, 1202.5852.

[12]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[13]  D. Dragomir,et al.  Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.

[14]  C. Alard Image subtraction using a space-varying kernel , 2000 .

[15]  C. Dominik,et al.  The thermal structure and the location of the snow line in the protosolar nebula: axisymmetric models with full 3-D radiative transfer , 2010, 1012.0727.

[16]  D. Lin,et al.  TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION. VII. ECCENTRICITY DISTRIBUTION OF GAS GIANTS , 2013, 1307.6450.

[17]  D. Bennett,et al.  Microlensing Results Challenge the Core Accretion Runaway Growth Scenario for Gas Giants , 2018, The Astrophysical Journal.

[18]  C. Dullemond Formation of (exo-)planets , 2013 .

[19]  Willy Benz,et al.  Extrasolar planet population synthesis I: Method, formation tracks and mass-distance distribution , 2009, 0904.2524.

[20]  Rachel Street,et al.  A machine learning classifier for microlensing in wide-field surveys , 2019, Astron. Comput..

[21]  E. Bachelet,et al.  OGLE-2018-BLG-0022: A Nearby M-dwarf Binary , 2019, The Astronomical Journal.

[22]  T. A. Lister,et al.  Novel scheduling approaches in the era of multi-telescope networks , 2014, Astronomical Telescopes and Instrumentation.

[23]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003 .

[24]  K. Ulaczyk,et al.  One or more bound planets per Milky Way star from microlensing observations , 2012, Nature.

[25]  F. Strafella,et al.  Discovery of a bright microlensing event with planetary features towards the Taurus region: a super-Earth planet , 2018, 1802.06659.

[26]  R. Poleski,et al.  The OGLE-III planet detection efficiency from six years of microlensing observations (2003–2008) , 2016, 1602.02519.

[27]  P. J. Wheatley,et al.  ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search): a possible expert-system based cooperative effort to hunt for planets of Earth mass and below , 2008, 0801.2162.

[28]  S. Mao,et al.  Can lensed stars be regarded as pointlike for microlensing by MACHOs , 1994 .

[29]  Austin B. Tomaney,et al.  Expanding the Realm of Microlensing Surveys with Difference Image Photometry , 1996 .

[30]  A. Pickles Differential population synthesis of early-type galaxies. I: Spectrophotometric atlas of synthesis standard spectra , 1985 .

[31]  H. J. Farnhill,et al.  The VST Photometric Hα Survey of the Southern Galactic Plane and Bulge (VPHAS , 2014, 1402.7024.

[32]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[33]  C. H. Ling,et al.  THE MICROLENSING EVENT RATE AND OPTICAL DEPTH TOWARD THE GALACTIC BULGE FROM MOA-II , 2013, 1305.0186.

[34]  C. H. Ling,et al.  RED NOISE VERSUS PLANETARY INTERPRETATIONS IN THE MICROLENSING EVENT OGLE-2013-BLG-446 , 2015, 1510.02724.

[35]  R. A. Street,et al.  General-purpose software for managing astronomical observing programs in the LSST era , 2018, Astronomical Telescopes + Instrumentation.

[36]  M. Dominik,et al.  An anomaly detector with immediate feedback to hunt for planets of Earth mass and below by microlensing , 2007, 0706.2566.

[37]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[38]  Frédéric Arenou,et al.  Empirical photometric calibration of the Gaia Red Clump: colours, effective temperature and absolute magnitude , 2017, 1710.05803.

[39]  Andrew Gould,et al.  Extending the MACHO Search to approximately 10 6 M sub sun , 1992 .

[40]  Andrew Gould,et al.  REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S RV ∼ 2.5 EXTINCTION CURVE , 2012, 1208.1263.

[41]  R. Street,et al.  Variable stars in the bulge globular cluster NGC 6401 , 2016, 1610.09911.

[42]  A. Gal-Yam,et al.  OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens , 2003, astro-ph/0309302.

[43]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.

[44]  Colin Snodgrass,et al.  A metric and optimization scheme for microlens planet searches , 2009, 0901.0846.

[45]  K. Horne,et al.  The first cool rocky/icy exoplanet , 2006 .

[46]  C. H. Ling,et al.  THE FIRST CIRCUMBINARY PLANET FOUND BY MICROLENSING: OGLE-2007-BLG-349L(AB)c , 2016, 1609.06720.

[47]  D. M. Bramich,et al.  A new algorithm for difference image analysis , 2008, 0802.1273.

[48]  C. Scheidegger,et al.  Machine-learning-based Brokers for Real-time Classification of the LSST Alert Stream , 2018, 1801.07323.

[49]  Akihiko Fukui,et al.  THE EXOPLANET MASS-RATIO FUNCTION FROM THE MOA-II SURVEY: DISCOVERY OF A BREAK AND LIKELY PEAK AT A NEPTUNE MASS , 2016 .

[50]  C. H. Ling,et al.  MOA 2010-BLG-477Lb: CONSTRAINING THE MASS OF A MICROLENSING PLANET FROM MICROLENSING PARALLAX, ORBITAL MOTION, AND DETECTION OF BLENDED LIGHT , 2012, 1205.6323.

[51]  Y. Alibert,et al.  Characterization of exoplanets from their formation - I. Models of combined planet formation and evolution , 2012, 1206.6103.

[52]  Clément Ranc,et al.  muLAn: gravitational MICROlensing Analysis Software , 2018 .

[53]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[54]  Y. Watase,et al.  Real-time difference imaging analysis of moa galactic bulge observations during 2000 , 2001 .

[55]  Y. Tsapras Microlensing Searches for Exoplanets , 2018, Geosciences.

[56]  T. A. Lister,et al.  RoboNet-II: Follow-up observations of microlensing events with a robotic network of telescopes , 2008, 0808.0813.

[57]  Kaspar von Braun,et al.  STELLAR DIAMETERS AND TEMPERATURES. IV. PREDICTING STELLAR ANGULAR DIAMETERS , 2013, 1311.4901.

[58]  B. Gaudi,et al.  OGLE-2018-BLG-0022: First Prediction of an Astrometric Microlensing Signal from a Photometric Microlensing Event , 2019, The Astrophysical Journal.

[59]  Bohdan Paczynski,et al.  Gravitational microlensing by double stars and planetary systems , 1991 .

[60]  Jean Surdej,et al.  Realisation of a fully-deterministic microlensing observing strategy for inferring planet populations , 2010 .

[61]  E. O. Ofek,et al.  Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era , 2011, 1106.5491.

[62]  Andrew W. Howard,et al.  Observed Properties of Extrasolar Planets , 2013, Science.

[63]  Andrew Gould,et al.  Discovering Planetary Systems through Gravitational Microlenses , 1992 .