Satellite Collision Probability Estimation Using Polynomial Chaos

This paper presents the application of polynomial chaos (PC) to estimating the probability of collision between two spacecraft. Common methods of quantifying this probability for conjunction assessment use either Monte Carlo analyses or include simplifying assumptions to improve tractability. A PC expansion, or PCE, provides a means for approximating the solution to a large set of stochastic ordinary dierential equations, which includes orbit propagation. When compared to Monte Carlo methods, non-intrusive, i.e., sampling-based, PCE generation techniques may greatly reduce the number of orbit propagations required to approximate the possibly non-Gaussian, a posteriori probability density function. The presented PC-based method of computing collision probability requires no fundamental simplifying assumptions, and reduces the computation time compared to Monte Carlo. This paper considers two cases where the common conjunction assessment assumptions are no longer valid. The results indeed demonstrate a reduction in computation time when compared to Monte Carlo, and improved accuracy when compared to simplied techniques.

[1]  Steven P. Hughes,et al.  Formation Design and Sensitivity Analysis for the Magnetospheric Multiscale Mission (MMS) , 2008 .

[2]  Matthew M. Berry,et al.  Implementation of Gauss-Jackson Integration for Orbit Propagation , 2004 .

[3]  Frank H. Bauer,et al.  PARTIALLY DECENTRALIZED CONTROL ARCHITECTURES FOR SATELLITE FORMATIONS , 2002 .

[4]  Donald W. Phillion,et al.  Monte Carlo Method for Collision Probability Calculations Using 3D Satellite Models , 2010 .

[5]  Salvatore Alfano,et al.  Determining If Two Solid Ellipsoids Intersect , 2003 .

[6]  G. Iaccarino,et al.  Non-intrusive low-rank separated approximation of high-dimensional stochastic models , 2012, 1210.1532.

[7]  R. Patera General Method for Calculating Satellite Collision Probability , 2001 .

[8]  A. Doostan,et al.  Nonlinear Propagation of Orbit Uncertainty Using Non-Intrusive Polynomial Chaos , 2013 .

[9]  Jing Li,et al.  An efficient surrogate-based method for computing rare failure probability , 2011, J. Comput. Phys..

[10]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[11]  Linda L. Crawford,et al.  An analytic method to determine future close approaches between satellites , 1984 .

[12]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[13]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[14]  James Agi Woodburn A Description of Filters for Minimizing the Time Required for Orbital Conjunction Computations , 2009 .

[15]  Aubrey B. Poore,et al.  Gaussian Sum Filters for Space Surveillance: Theory and Simulations , 2011 .

[16]  Gianluca Iaccarino,et al.  A least-squares approximation of partial differential equations with high-dimensional random inputs , 2009, J. Comput. Phys..

[17]  Salvatore Alfano Toroidal path filter for orbital conjunction screening , 2012 .

[18]  Ken Chan Short-Term vs. Long-Term Spacecraft Encounters , 2004 .

[19]  Roger Ghanem,et al.  Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media , 1998 .

[20]  Kyle J. DeMars,et al.  Orbit Determination Performance Improvements for High Area-to-Mass Ratio Space Object Tracking Using an Adaptive Gaussian Mixtures Estimation Algorithm , 2009 .

[21]  J. Dormand,et al.  High order embedded Runge-Kutta formulae , 1981 .

[22]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[23]  S. A. Curtis,et al.  Magnetospheric Multiscale Mission , 2005 .

[24]  Rudolph van der Merwe,et al.  The square-root unscented Kalman filter for state and parameter-estimation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[25]  Salvatore Alfano Determining satellite close approaches, part 2 , 1994 .

[26]  Bin Jia,et al.  Stochastic Collocation Method for Uncertainty Propagation , 2012 .

[27]  Roger Ghanem,et al.  Stochastic model reduction for chaos representations , 2007 .

[28]  Puneet Singla,et al.  A Hierarchical Tree Code Based Approach for Ecient Conjunction Analysis , 2012 .

[29]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[30]  Daniel J. Scheeres,et al.  Analytical Nonlinear Propagation of Uncertainty in the Two-Body Problem , 2012 .

[31]  S. Alfano,et al.  Satellite Conjunction Monte Carlo Analysis , 2009 .

[32]  Salvatore Alfano,et al.  Determining satellite close approaches , 1992 .

[33]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[34]  R. Park,et al.  Nonlinear Mapping of Gaussian Statistics: Theory and Applications to Spacecraft Trajectory Design , 2006 .

[35]  Jing Li,et al.  Evaluation of failure probability via surrogate models , 2010, J. Comput. Phys..

[36]  D. Vose Risk Analysis: A Quantitative Guide , 2000 .

[37]  B. Numerov,et al.  Note on the numerical integration of d2x/dt2 = f(x, t) , 1927 .

[38]  Salvatore Alfanol,et al.  A Numerical Implementation of Spherical Object Collision Probability , 2005 .

[39]  Ming C. Lin,et al.  Collision Detection between Geometric Models: A Survey , 1998 .

[40]  Brandon A. Jones,et al.  Comparisons of the Cubed-Sphere Gravity Model with the Spherical Harmonics , 2010 .

[41]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[42]  Russell P. Patera,et al.  Satellite Collision Probability for Nonlinear Relative Motion , 2002 .

[43]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[44]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[45]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[46]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[47]  Richard W. Ghrist,et al.  Impact of Non-Gaussian Error Volumes on Conjunction Assessment Risk Analysis , 2012 .

[48]  Deok-Jin Lee,et al.  Probability of Collision Error Analysis , 1999 .

[49]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[50]  James Woodburn,et al.  Determination of Close Approaches for Constellations of Satellites , 1998 .

[51]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[52]  John Red-Horse,et al.  Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach , 1999 .

[53]  F. Landis Markley,et al.  Sequential Probability Ratio Test for Collision Avoidance Maneuver Decisions , 2011 .

[54]  A. Doostan,et al.  CONJUNCTION ASSESSMENT USING POLYNOMIAL CHAOS EXPANSIONS , 2012 .

[55]  Salvatore Alfano Addressing Nonlinear Relative Motion For Spacecraft Collision Probability , 2006 .

[56]  Chris Sabol,et al.  Linearized Orbit Covariance Generation and Propagation Analysis via Simple Monte Carlo Simulations (Preprint) , 2010 .

[57]  Michèle Lavagna,et al.  Nonlinear Mapping of Uncertainties in Celestial Mechanics , 2013 .

[58]  A. Morselli,et al.  Rigorous computation of orbital conjunctions , 2012 .