Weighted Symbolic Dependence Metric (wSDM) for fMRI resting-state connectivity: A multicentric validation for frontotemporal dementia

The search for biomarkers of neurodegenerative diseases via fMRI functional connectivity (FC) research has yielded inconsistent results. Yet, most FC studies are blind to non-linear brain dynamics. To circumvent this limitation, we developed a “weighted Symbolic Dependence Metric” (wSDM) measure. Using symbolic transforms, we factor in local and global temporal features of the BOLD signal to weigh a robust copula-based dependence measure by symbolic similarity, capturing both linear and non-linear associations. We compared this measure with a linear connectivity metric (Pearson’s R) in its capacity to identify patients with behavioral variant frontotemporal dementia (bvFTD) and controls based on resting-state data. We recruited participants from two international centers with different MRI recordings to assess the consistency of our measure across heterogeneous conditions. First, a seed-analysis comparison of the salience network (a specific target of bvFTD) and the default-mode network (as a complementary control) between patients and controls showed that wSDM yields better identification of resting-state networks. Moreover, machine learning analysis revealed that wSDM yielded higher classification accuracy. These results were consistent across centers, highlighting their robustness despite heterogeneous conditions. Our findings underscore the potential of wSDM to assess fMRI-derived FC data, and to identify sensitive biomarkers in bvFTD.

[1]  C. Stam,et al.  Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets , 2002 .

[2]  Daniel L. Kimmel,et al.  Neuroimaging insights into network-based neurodegeneration. , 2012, Current opinion in neurology.

[3]  G. Glover,et al.  Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control , 2007, The Journal of Neuroscience.

[4]  G. Frisoni,et al.  Functional network disruption in the degenerative dementias , 2011, The Lancet Neurology.

[5]  S. Rombouts,et al.  Loss of ‘Small-World’ Networks in Alzheimer's Disease: Graph Analysis of fMRI Resting-State Functional Connectivity , 2010, PloS one.

[6]  Yikai Wang,et al.  An Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation , 2016, Front. Neurosci..

[7]  E. Tolosa,et al.  Functional brain networks and cognitive deficits in Parkinson's disease , 2014, Human brain mapping.

[8]  J. Trojanowski,et al.  Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics , 2007, Nature Reviews Drug Discovery.

[9]  B. Miller,et al.  Neurodegenerative Diseases Target Large-Scale Human Brain Networks , 2009, Neuron.

[10]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[11]  Morten L. Kringelbach,et al.  Exploring the network dynamics underlying brain activity during rest , 2014, Progress in Neurobiology.

[12]  M. Greicius Resting-state functional connectivity in neuropsychiatric disorders , 2008, Current opinion in neurology.

[13]  B. T. Thomas Yeo,et al.  Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: Issues and recommendations , 2017, NeuroImage.

[14]  Chaogan Yan,et al.  DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI , 2010, Front. Syst. Neurosci..

[15]  Karl J. Friston,et al.  A systematic framework for functional connectivity measures , 2014, Front. Neurosci..

[16]  Dinggang Shen,et al.  Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification , 2017, Human brain mapping.

[17]  Daniel L. Rubin,et al.  Network Analysis of Intrinsic Functional Brain Connectivity in Alzheimer's Disease , 2008, PLoS Comput. Biol..

[18]  Gretel Sanabria-Diaz,et al.  Glucose Metabolism during Resting State Reveals Abnormal Brain Networks Organization in the Alzheimer’s Disease and Mild Cognitive Impairment , 2013, PloS one.

[19]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  David A. Fenstermacher,et al.  Introduction to bioinformatics , 2005, J. Assoc. Inf. Sci. Technol..

[21]  Simon B. Eickhoff,et al.  Best Practices in Data Analysis and Sharing in Neuroimaging using MRI , 2016 .

[22]  Fabricio Baglivo,et al.  Early detection of intentional harm in the human amygdala. , 2016, Brain : a journal of neurology.

[23]  David A. Leopold,et al.  Dynamic functional connectivity: Promise, issues, and interpretations , 2013, NeuroImage.

[24]  R. Adolphs,et al.  Building a Science of Individual Differences from fMRI , 2016, Trends in Cognitive Sciences.

[25]  M. Greicius,et al.  Decoding subject-driven cognitive states with whole-brain connectivity patterns. , 2012, Cerebral cortex.

[26]  Maurizio Corbetta,et al.  Functional connectivity in resting-state fMRI: Is linear correlation sufficient? , 2011, NeuroImage.

[27]  V. Menon,et al.  Saliency, switching, attention and control: a network model of insula function , 2010, Brain Structure and Function.

[28]  Stephen M. Smith,et al.  Investigations into resting-state connectivity using independent component analysis , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[29]  Facundo Manes,et al.  Contextual social cognition and the behavioral variant of frontotemporal dementia , 2012, Neurology.

[30]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[31]  Olivier Piguet,et al.  Tackling variability: A multicenter study to provide a gold‐standard network approach for frontotemporal dementia , 2017, Human brain mapping.

[32]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[33]  Patrizia Rizzu,et al.  Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia , 2013, Neurology.

[34]  M. Breakspear Dynamic models of large-scale brain activity , 2017, Nature Neuroscience.

[35]  Massimo Filippi,et al.  Functional network connectivity in the behavioral variant of frontotemporal dementia , 2013, Cortex.

[36]  M. Greicius,et al.  Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI , 2004, Proc. Natl. Acad. Sci. USA.

[37]  Gavin C. Cawley,et al.  On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation , 2010, J. Mach. Learn. Res..

[38]  Martin Prince,et al.  The cross-sectional survey , 1998 .

[39]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[40]  Niall W. Duncan,et al.  Neuropsychiatric symptoms in Alzheimer's disease are related to functional connectivity alterations in the salience network , 2014, Human brain mapping.

[41]  Reinhold Schmidt,et al.  A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer's disease , 2018, NeuroImage.

[42]  J. Hodges,et al.  Behavioural-variant frontotemporal dementia: diagnosis, clinical staging, and management , 2011, The Lancet Neurology.

[43]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[44]  Jeff H. Duyn,et al.  Hemodynamic nonlinearities affect BOLD fMRI response timing and amplitude , 2009, NeuroImage.

[45]  Peter F. Liddle,et al.  Aberrant salience network (bilateral insula and anterior cingulate cortex) connectivity during information processing in schizophrenia , 2010, Schizophrenia Research.

[46]  M. Paluš,et al.  The role of nonlinearity in computing graph-theoretical properties of resting-state functional magnetic resonance imaging brain networks. , 2011, Chaos.

[47]  Russell A. Poldrack,et al.  Guidelines for reporting an fMRI study , 2008, NeuroImage.

[48]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[49]  L. Mucke,et al.  A network dysfunction perspective on neurodegenerative diseases , 2006, Nature.

[50]  Daniel Fraiman,et al.  Brain Network Organization and Social Executive Performance in Frontotemporal Dementia , 2016, Journal of the International Neuropsychological Society.

[51]  Guillaume A. Rousselet,et al.  A statistical framework for neuroimaging data analysis based on mutual information estimated via a Gaussian copula , 2016 .

[52]  Facundo Manes,et al.  A neuropsychological battery to detect specific executive and social cognitive impairments in early frontotemporal dementia. , 2009, Brain : a journal of neurology.

[53]  Karl J. Friston,et al.  Principles of Brain Dynamics: Global State Interactions , 2012 .

[54]  Ernst Strüngmann Forum,et al.  Dynamic coordination in the brain : from neurons to mind , 2010 .

[55]  Jie Xiang,et al.  An abnormal resting-state functional brain network indicates progression towards Alzheimer's disease , 2013, Neural regeneration research.

[56]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[57]  Jun-Sung Park,et al.  Influence of APOE Genotype on Whole-Brain Functional Networks in Cognitively Normal Elderly , 2013, PloS one.

[58]  Dimitri Van De Ville,et al.  Principal components of functional connectivity: A new approach to study dynamic brain connectivity during rest , 2013, NeuroImage.

[59]  R. Stewart,et al.  Population normative data for the 10/66 Dementia Research Group cognitive test battery from Latin America, India and China: a cross-sectional survey , 2009, BMC neurology.

[60]  Robert A. Gross,et al.  Altered functional connectivity in asymptomatic MAPT subjects: A comparison to bvFTD , 2011 .

[61]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[62]  Massimo Filippi,et al.  Brain network connectivity assessed using graph theory in frontotemporal dementia , 2013, Neurology.

[63]  Agustín Ibáñez,et al.  Your perspective and my benefit: multiple lesion models of self-other integration strategies during social bargaining. , 2016, Brain : a journal of neurology.

[64]  T. Montine,et al.  Biomarkers for cognitive impairment and dementia in elderly people , 2008, The Lancet Neurology.

[65]  Cornelis J. Stam,et al.  Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer's disease , 2006, NeuroImage.

[66]  L. Canuet,et al.  Resting-State Network Disruption and APOE Genotype in Alzheimer's Disease: A lagged Functional Connectivity Study , 2012, PloS one.

[67]  Jun-Sung Park,et al.  Whole-brain Functional Networks in Cognitively Normal, Mild Cognitive Impairment, and Alzheimer’s Disease , 2013, PloS one.

[68]  J. Kinney,et al.  Equitability, mutual information, and the maximal information coefficient , 2013, Proceedings of the National Academy of Sciences.

[69]  Keith A. Johnson,et al.  Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer's Disease , 2009, The Journal of Neuroscience.

[70]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[71]  E. Bullmore,et al.  Behavioral / Systems / Cognitive Functional Connectivity and Brain Networks in Schizophrenia , 2010 .

[72]  Fang Yang,et al.  Quantitative analysis of dietary protein intake and stroke risk , 2014, Neurology.

[73]  M. Sigman,et al.  Attention, in and Out: Scalp-Level and Intracranial EEG Correlates of Interoception and Exteroception , 2017, Front. Neurosci..

[74]  B. Schweizer,et al.  On Nonparametric Measures of Dependence for Random Variables , 1981 .

[75]  Barnabás Póczos,et al.  ICA and ISA using Schweizer-Wolff measure of dependence , 2008, ICML '08.

[76]  Guillaume A. Rousselet,et al.  A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula , 2016, bioRxiv.

[77]  B. Biswal,et al.  Functional connectivity of default mode network components: Correlation, anticorrelation, and causality , 2009, Human brain mapping.

[78]  Shuran Li,et al.  Prevalence of dementia in Latin America, India, and China: a population-based cross-sectional survey , 2008, The Lancet.

[79]  Cornelis J. Stam,et al.  Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain , 2008, NeuroImage.

[80]  Dimitri Van De Ville,et al.  Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks , 2015, Nature Communications.

[81]  D. Hu,et al.  Discriminative analysis of non-linear brain connectivity in schizophrenia: an fMRI Study , 2013, Front. Hum. Neurosci..

[82]  Thomas E. Nichols,et al.  Scanning the horizon: towards transparent and reproducible neuroimaging research , 2016, Nature Reviews Neuroscience.

[83]  Manel Martínez-Ramón,et al.  Analysis of fMRI time series with mutual information , 2012, Medical Image Anal..

[84]  Michel Le Van Quyen,et al.  Exploring the nonlinear dynamics of the brain , 2003, Journal of Physiology-Paris.

[85]  M. Prince,et al.  World Alzheimer report 2016: improving healthcare for people living with dementia: coverage, quality and costs now and in the future , 2016 .

[86]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[87]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[88]  A. Belger,et al.  Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia , 2014, NeuroImage: Clinical.

[89]  P. Rapp,et al.  Time domain measures of inter-channel EEG correlations: a comparison of linear, nonparametric and nonlinear measures , 2013, Cognitive Neurodynamics.

[90]  J. Haro,et al.  Social network typologies and mortality risk among older people in China, India, and Latin America: A 10/66 Dementia Research Group population-based cohort study. , 2015, Social science & medicine.

[91]  Sandra Gaißer,et al.  A multivariate version of Hoeffding's Phi-Square , 2010, J. Multivar. Anal..

[92]  David Huepe,et al.  Comparing moral judgments of patients with frontotemporal dementia and frontal stroke. , 2014, JAMA neurology.

[93]  Michael Hornberger,et al.  A Comparison of Magnetic Resonance Imaging and Neuropsychological Examination in the Diagnostic Distinction of Alzheimer's Disease and Behavioral Variant Frontotemporal Dementia , 2016, Front. Aging Neurosci..

[94]  Agustín Ibáñez,et al.  Cortical dynamics and subcortical signatures of motor-language coupling in Parkinson’s disease , 2015, Scientific Reports.

[95]  Zoltán Szabó,et al.  Information theoretical estimators toolbox , 2014, J. Mach. Learn. Res..

[96]  Xiaoping Xie,et al.  Spatiotemporal nonlinearity in resting-state fMRI of the human brain , 2008, NeuroImage.

[97]  Yi Li,et al.  Copula Correlation: An Equitable Dependence Measure and Extension of Pearson's Correlation , 2013, 1312.7214.

[98]  S. Dehaene,et al.  Information Sharing in the Brain Indexes Consciousness in Noncommunicative Patients , 2013, Current Biology.

[99]  C. Stam,et al.  Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field , 2005, Clinical Neurophysiology.

[100]  Lawrence Barnthouse,et al.  Issues and Recommendations , 2007 .

[101]  Silke Dodel,et al.  Functional connectivity: studying nonlinear, delayed interactions between BOLD signals , 2003, NeuroImage.

[102]  Cheryl L. Grady,et al.  Abnormal network connectivity in frontotemporal dementia: Evidence for prefrontal isolation , 2013, Cortex.

[103]  Thomas E. Nichols,et al.  Best practices in data analysis and sharing in neuroimaging using MRI , 2017, Nature Neuroscience.

[104]  S. Cappa,et al.  Brain connectivity in neurodegenerative diseases—from phenotype to proteinopathy , 2014, Nature Reviews Neurology.

[105]  Javier M. Buldú,et al.  Functional brain networks: great expectations, hard times and the big leap forward , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[106]  Cornelis J. Stam,et al.  Single-Subject Gray Matter Graph Properties and Their Relationship with Cognitive Impairment in Early- and Late-Onset Alzheimer's Disease , 2014, Brain Connect..

[107]  Jeroen van der Grond,et al.  Resting state functional connectivity differences between behavioral variant frontotemporal dementia and Alzheimer's disease , 2015, Front. Hum. Neurosci..

[108]  Bin He,et al.  A Linear/Nonlinear Characterization of Resting State Brain Networks in fMRI Time Series , 2012, Brain Topography.

[109]  Efstathios D. Gennatas,et al.  Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. , 2010, Brain : a journal of neurology.

[110]  Daniel Fraiman,et al.  Towards affordable biomarkers of frontotemporal dementia: A classification study via network’s information sharing , 2017, Scientific Reports.

[111]  Csaba Szepesvari,et al.  Robust Nonparametric Copula Based Dependence Estimators , 2011 .

[112]  J. Maccluer,et al.  A population-based, cross-sectional survey of the Zuni Pueblo: a collaborative approach to an epidemic of kidney disease. , 2002, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[113]  Andrea Bergmann,et al.  Statistical Parametric Mapping The Analysis Of Functional Brain Images , 2016 .

[114]  Nick C Fox,et al.  Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. , 2011, Brain : a journal of neurology.

[115]  Tom M. Mitchell,et al.  Machine learning classifiers and fMRI: A tutorial overview , 2009, NeuroImage.

[116]  Yuan Zhou,et al.  Abnormal Cortical Networks in Mild Cognitive Impairment and Alzheimer's Disease , 2010, PLoS Comput. Biol..

[117]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[118]  Jie Tian,et al.  Altered topological patterns of brain networks in mild cognitive impairment and Alzheimer's disease: A resting-state fMRI study , 2012, Psychiatry Research: Neuroimaging.

[119]  Anjali Krishnan,et al.  Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations , 2014, NeuroImage.