Enhance photoluminescence properties of Ca-Eu:Y2O3@SiO2 core–shell nanomaterial for the advanced forensic and LEDs applications

[1]  Arpit Dwivedi,et al.  Qualitative surface characterization of Indian Permian coal using XPS and FTIR , 2022, International Journal of Coal Preparation and Utilization.

[2]  Liang Fang,et al.  NIR‐I‐Responsive Single‐Band Upconversion Emission through Energy Migration in Core‐Shell‐Shell Nanostructures , 2022, Angewandte Chemie.

[3]  Amit Kumar Srivastava,et al.  Tunable photoluminescence and energy transfer of Eu3+,Ho3+-doped Ca0.05Y1.93-xO2 nanophosphors for warm white LEDs applications , 2022, Scientific Reports.

[4]  Sanjeev Srivastava,et al.  Ho3+activated Ca0.5Y1.90-xO3 green-emitting nanophosphors for solid state lightening: synthesis, characterization and photoluminescence properties , 2021, Journal of Molecular Structure.

[5]  Sanjeev Srivastava,et al.  Synthesis and enhanced photoluminescence properties of red emitting divalent ion (Ca2+) doped Eu:Y2O3 nanophosphors for optoelectronic applications , 2021, Journal of Rare Earths.

[6]  Sanjeev Srivastava,et al.  A flexible photoluminescent nanoprobe for sensitive and rapid detection of arsenic ions concentration , 2021, Microchemical Journal.

[7]  S. Srivastava,et al.  Synthesis of high luminescent Eu3+ doped nanoparticle and its application as highly sensitive and selective detection of Fe3+ in real water and human blood serum. , 2021, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[8]  Amit Kumar Srivastava,et al.  Gold nanorods modified Eu: Y2O3 dispersed PVA film as a highly sensitive plasmon-enhanced luminescence probe for excellent and fast non-enzymatic detection of H2O2 and glucose , 2020 .

[9]  H. B. Premkumar,et al.  Fabrication of flux supported SrTiO3:Eu3+ fluorescent powders: New prospective of dual mode, ink-free data security applications , 2020 .

[10]  A. G. Bispo-Jr,et al.  Multicolor-emitting luminescent Y2O3:RE3+@SiO2-[RE3+(β-diketone)3] core@shell hybrids featuring dual RE3+ activator centers , 2020 .

[11]  H. Zeng,et al.  Energy Manipulation in Lanthanide‐Doped Core–Shell Nanoparticles for Tunable Dual‐Mode Luminescence toward Advanced Anti‐Counterfeiting , 2020, Advanced materials.

[12]  Haifeng Shi,et al.  Wide visible-range fluorescence of Eu3+ located in the macroscopic bi-layer ceramic/glass composite , 2020, RSC advances.

[13]  H. Saudi,et al.  Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste , 2020, Journal of Materials Science: Materials in Electronics.

[14]  H. B. Premkumar,et al.  Near UV-light excitable SrAl2O4:Eu3+ nanophosphors for display device applications , 2020 .

[15]  H. Nagabhushana,et al.  Influence of surface modification on enhancement of luminescent properties of SiO2@SrTiO3:Dy3+ nanopowders: Probe for visualization of sweat pores present in latent fingerprints , 2019, Optik.

[16]  H. Nagabhushana,et al.  Pivotal role of fluxes in BaTiO3:Eu3+ nano probes for visualization of latent fingerprints on multifaceted substrates and anti-counterfeiting applications , 2019, Microchemical Journal.

[17]  Hamid M. Ghaithan,et al.  Mesoporous multi-silica layer-coated Y2O3:Eu core-shell nanoparticles: Synthesis, luminescent properties and cytotoxicity evaluation. , 2019, Materials science & engineering. C, Materials for biological applications.

[18]  Lin Wang,et al.  Flexible, controllable, and high-strength near-infrared reflective Y2O3 nanofiber membrane by electrospinning a polyacetylacetone‑yttrium precursor , 2018, Materials & Design.

[19]  Mohamed O. Amin,et al.  Metal oxide nanoparticles for latent fingerprint visualization and analysis of small drug molecules using surface-assisted laser desorption/ionization mass spectrometry , 2018, Analytical and Bioanalytical Chemistry.

[20]  S. C. Sharma,et al.  SiO2@LaOF:Eu3+ core-shell functional nanomaterials for sensitive visualization of latent fingerprints and WLED applications. , 2018, Journal of colloid and interface science.

[21]  H. Nagabhushana,et al.  Surfactant-Assisted BaTiO3:Eu3+@SiO2 Core–Shell Superstructures Obtained by Ultrasonication Method: Dormant Fingerprint Visualization and Red Component of White Light-Emitting Diode Applications , 2018 .

[22]  Mohamed Henini,et al.  Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: synthesis structural optical and antibacterial studies , 2017 .

[23]  S. C. Sharma,et al.  Versatile core–shell SiO2@SrTiO3:Eu3+, Li+ nanopowders as fluorescent label for the visualization of latent fingerprints and anti-counterfeiting applications , 2017 .

[24]  H. Nagabhushana,et al.  Novel and highly efficient red luminescent sensor based SiO 2 @Y 2 O 3 :Eu 3+ , M + (M + = Li, Na, K) composite core–shell fluorescent markers for latent fingerprint recognition, security ink and solid state lightning applications , 2017 .

[25]  S. C. Sharma,et al.  Structural, morphological and photometric properties of sonochemically synthesized Eu3+ doped Y2O3 nanophosphor for optoelectronic devices , 2017 .

[26]  A. Ansari,et al.  Designing of luminescent GdPO 4 :Eu@LaPO 4 @SiO 2 core/shell nanorods: Synthesis, structural and luminescence properties , 2017 .

[27]  O. Pandey,et al.  Facile route to produce spherical and highly luminescent Tb3+ doped Y2O3 nanophosphors , 2017 .

[28]  Wenguang Zhao,et al.  Red-emitting CaLa4(SiO4)3O:Eu3+ phosphor with superior thermal stability and high quantum efficiency for warm w-LEDs , 2017 .

[29]  Y. Kumar,et al.  Effect of Eu ion incorporation on the emission behavior of Y2O3 nanophosphors: A detailed study of structural and optical properties , 2016 .

[30]  K. Mondal,et al.  Influence of doping and annealing temperature on the structural and optical properties of Mg2SiO4:Eu3+ synthesized by combustion method , 2016 .

[31]  Chung‐Hsin Lu,et al.  Microwave-assisted hydrothermal synthesis of Eu2O3-coated spherical Y2O3 ceramic particles , 2016 .

[32]  Hongwei Liu,et al.  Effect of co-doped metal caions on the properties of Y2O3:Eu3+ phosphors synthesized by gel-combustion method , 2016 .

[33]  P. Kumari,et al.  Enhanced red emission on co-doping of divalent ions (M(2+)=Ca(2+), Sr(2+), Ba(2+)) in YVO4:Eu(3+) phosphor and spectroscopic analysis for its application in display devices. , 2016, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[34]  M. Toprak,et al.  Microwave synthesis of Y2O3:Eu3+ nanophosphors: A study on the influence of dopant concentration and calcination temperature on structural and photoluminescence properties , 2016 .

[35]  Hai-xia Zhang,et al.  Fluorescence enhancement of europium complexes by core-shell Ag@SiO₂ nanoparticles. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[36]  Chunhua Lu,et al.  Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage , 2015, Scientific Reports.

[37]  R. Saraf,et al.  Eu3+-activated SrMoO4 phosphors for white LEDs applications: Synthesis and structural characterization , 2015 .

[38]  Hyun-Goo Kim Formation and photoluminescence of Eu3+-doped Y2O3-SiO2 fabricated by using a mechanochemical method , 2013 .

[39]  V. K. Rai,et al.  Photoluminescence study of nanocrystalline Y2O3:Ho3+ phosphor. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[40]  S. Sharma,et al.  Swift heavy ion induced structural and optical properties of Y2O3:Eu3+ nanophosphor , 2013 .

[41]  S. Han,et al.  Enhanced luminescence intensity and color purity of the red emitting LnVO{sub 4}:Eu{sup 3+}@ SiO{sub 2} (Ln = Gd, Y and Gd/Y) powder phosphors , 2013 .

[42]  Dimos Poulikakos,et al.  Optically stable biocompatible flame-made SiO2-coated Y2O3:Tb3+ nanophosphors for cell imaging. , 2012, ACS nano.

[43]  Dongsen Mao,et al.  Synthesis and luminescence properties of YVO4:Eu3+ cobblestone - like microcrystalline phosphors obtained from the mixed solvent - thermal method , 2011 .

[44]  Yuan-Xiang Fu,et al.  Comparative study of synthesis and characterization of monodispersed SiO2 @ Y2O3:Eu3+ and SiO2 @ Y2O3:Eu3+ @ SiO2 core–shell structure phosphor particles , 2009 .

[45]  Jun Lin,et al.  Synthesis and Luminescence Properties of Monodisperse Spherical Y2O3:Eu3+@SiO2 Particles with Core−shell Structure , 2007 .

[46]  P. Perriat,et al.  Luminescence enhancement by energy transfer in core-shell structures , 2006 .

[47]  Jun Lin,et al.  Fabrication and photoluminescence properties of core-shell structured spherical SiO_2@Gd_2Ti_2O_7:Eu^3+ phosphors , 2006 .