Magnetoresistance in Hybrid Pt/CoFe2O4 Bilayers Controlled by Competing Spin Accumulation and Interfacial Chemical Reconstruction.

Pure spin currents have potential for use in energy-friendly spintronics. They can be generated by a flow of charge along a nonmagnetic metal with large spin-orbit coupling. This produces a spin accumulation at the surfaces, controllable by the magnetization of an adjacent ferromagnetic layer. Paramagnetic metals typically used are close to ferromagnetic instability and thus magnetic proximity effects can contribute to the observed angular-dependent magnetoresistance (ADMR). As interface phenomena govern the spin conductance across the metal/ferromagnetic-insulator heterostructures, unraveling these distinct contributions is pivotal for a full understanding of spin current conductance. Here, we report X-ray absorption and magnetic circular dichroism (XMCD) at Pt M and (Co, Fe) L absorption edges and atomically resolved energy electron loss spectroscopy (EELS) data of Pt/CoFe2O4 bilayers, where CoFe2O4 layers have been capped by Pt grown at different temperatures. It was found that the ADMR differs dramatically, dominated either by spin Hall magnetoresistance (SMR) associated with the spin Hall effect or by anisotropic magnetoresistance. The XMCD and EELS data indicate that the Pt layer grown at room temperature does not display any magnetic moment, whereas when grown at a higher temperature, it becomes magnetic due to interfacial Pt-(Co, Fe) alloying. These results enable differentiation of spin accumulation from interfacial chemical reconstructions and tailoring of the angular-dependent magnetoresistance.

[1]  K. Ollefs,et al.  Investigating magnetic proximity effects at ferrite/Pt interfaces , 2017 .

[2]  M. Roldan,et al.  Competition between Polar and Nonpolar Lattice Distortions in Oxide Quantum Wells: New Critical Thickness at Polar Interfaces. , 2017, Physical review letters.

[3]  T. Kikkawa,et al.  Detection of induced paramagnetic moments in Pt on Y 3 Fe 5 O 12 via x-ray magnetic circular dichroism , 2017, 1706.07559.

[4]  Joshaniel F. K. Cooper,et al.  Unexpected structural and magnetic depth dependence of YIG thin films , 2017, 1703.08752.

[5]  C. Chien,et al.  Electrical Detection of Spin Backflow from an Antiferromagnetic Insulator/Y_{3}Fe_{5}O_{12} Interface. , 2016, Physical review letters.

[6]  E. Saitoh,et al.  Tunable Sign Change of Spin Hall Magnetoresistance in Pt/NiO/YIG Structures. , 2016, Physical review letters.

[7]  R. Gross,et al.  Impact of the interface quality of Pt/YIG(111) hybrids on their spin Hall magnetoresistance , 2016, 1612.08150.

[8]  J. Nicolas,et al.  Design and performance of BOREAS, the beamline for resonant X-ray absorption and scattering experiments at the ALBA synchrotron light source. , 2016, Journal of synchrotron radiation.

[9]  H. Naramoto,et al.  Proximity-Induced Spin Polarization of Graphene in Contact with Half-Metallic Manganite. , 2016, ACS nano.

[10]  K. Ollefs,et al.  Absence of magnetic proximity effects in magnetoresistive Pt / CoF e 2 O 4 hybrid interfaces , 2015, 1510.01080.

[11]  Takashi Kikkawa,et al.  Intrinsic surface magnetic anisotropy in Y 3 Fe 5 O 12 as the origin of low-magnetic-field behavior of the spin Seebeck effect , 2015 .

[12]  Wen-Feng Hsieh,et al.  Tuning the functionalities of a mesocrystal via structural coupling , 2015, Scientific Reports.

[13]  S. Francoual,et al.  Static Magnetic Proximity Effect in Pt/NiFe2O4 and Pt/Fe Bilayers Investigated by X-Ray Resonant Magnetic Reflectivity. , 2014, Physical review letters.

[14]  Thomas T. M. Palstra,et al.  Surface sensitivity of the spin Seebeck effect , 2014, 1412.7712.

[15]  C. Chien,et al.  Physical origins of the new magnetoresistance in Pt/YIG. , 2014, Physical review letters.

[16]  F. Golmar,et al.  Spin Hall magnetoresistance at Pt/CoFe2O4 interfaces and texture effects , 2013, 1307.1267.

[17]  M. B. Jungfleisch,et al.  Improvement of the yttrium iron garnet/platinum interface for spin pumping-based applications , 2013, International Conference on Oxide Materials for Electronic Engineering - fabrication, properties and applications (OMEE-2014).

[18]  Donghai Mei,et al.  Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres , 2013, Nature Communications.

[19]  J. Fontcuberta,et al.  Spin Hall magnetoresistance as a probe for surface magnetization in Pt/CoFe$_2$O$_4$ bilayers , 2013, 1510.01449.

[20]  Timo Kuschel,et al.  Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids , 2013, 1304.6151.

[21]  J. Moussy From epitaxial growth of ferrite thin films to spin-polarized tunnelling , 2013 .

[22]  D. Viehland,et al.  Engineered magnetic shape anisotropy in BiFeO3-CoFe2O4 self-assembled thin films. , 2013, ACS nano.

[23]  J. B. Youssef,et al.  Comparative measurements of inverse spin Hall effects and magnetoresistance in YIG/Pt and YIG/Ta , 2013, 1302.4416.

[24]  Eiji Saitoh,et al.  Theory of spin Hall magnetoresistance , 2013, 1302.1352.

[25]  J. B. Youssef,et al.  Spin-Hall magnetoresistance in platinum on yttrium iron garnet: Dependence on platinum thickness and in-plane/out-of-plane magnetization , 2013, 1301.3266.

[26]  R. Gross,et al.  Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. , 2012, Physical review letters.

[27]  L. Sun,et al.  Pt Magnetic Polarization on Y_{3}Fe_{5}O_{12} and Magnetotransport Characteristics , 2013 .

[28]  Stephan Altmannshofer,et al.  Investigation of induced Pt magnetic polarization in Pt/Y3Fe5O12 bilayers , 2012, 1211.0916.

[29]  Y. P. Chen,et al.  Transport magnetic proximity effects in platinum. , 2012, Physical review letters.

[30]  James M. Rondinelli,et al.  Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery , 2012 .

[31]  S. Pennycook,et al.  STEM-EELS imaging of complex oxides and interfaces , 2012 .

[32]  R. Cava,et al.  Magnetic proximity effect as a pathway to spintronic applications of topological insulators. , 2011, Nano letters.

[33]  A. Barbier,et al.  Restoration of bulk magnetic properties by strain engineering in epitaxial CoFe2O4 (001) ultrathin films , 2011 .

[34]  A. Stierle,et al.  Stable cation inversion at the MgAl2O4(100) surface. , 2011, Physical review letters.

[35]  F. D. de Groot,et al.  The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. , 2010, Micron.

[36]  Yuan Zhao,et al.  In situ electron energy loss spectroscopy study of metallic Co and Co oxides , 2010 .

[37]  K. Horn,et al.  Induced magnetism of carbon atoms at the graphene/Ni(111) interface , 2009, 0907.4344.

[38]  C. Piamonteze,et al.  Accuracy of the spin sum rule in XMCD for the transition-metal L edges from manganese to copper , 2009 .

[39]  C. Piamonteze,et al.  The accuracy of the spin sum rule in XMCD , 2009 .

[40]  S. Maekawa,et al.  Observation of the spin Seebeck effect , 2008, Nature.

[41]  S. Maekawa,et al.  Spin current, spin accumulation and spin Hall effect , 2008, Science and technology of advanced materials.

[42]  J. Lodder,et al.  Reorientation of magnetic anisotropy in epitaxial cobalt ferrite thin films , 2007 .

[43]  R. Ramesh,et al.  Controlling self-assembled perovskite-spinel nanostructures. , 2006, Nano letters.

[44]  Eiji Saitoh,et al.  Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect , 2006 .

[45]  J. Tominaga,et al.  Thermal decomposition of sputtered thin PtOx layers used in super-resolution optical disks , 2005 .

[46]  J. Fontcuberta,et al.  Self-organized structures in CoCr 2 O 4 (001) thin films: Tunable growth from pyramidal clusters to a { 111 } fully faceted surface , 2004 .

[47]  T. Palstra,et al.  Spin-polarized transport across sharp antiferromagnetic boundaries. , 2002, Physical review letters.

[48]  A. Brataas,et al.  Enhanced gilbert damping in thin ferromagnetic films. , 2001, Physical review letters.

[49]  M. Sacchi,et al.  Fe 2p absorption in magnetic oxides: Quantifying angular dependent saturation effects , 2000 .

[50]  M. A. James,et al.  Characterization of nanocrystalline γ-Fe2O3 with synchrotron radiation techniques , 1999 .

[51]  P. Buseck,et al.  Ratios of ferrous to ferric iron from nanometre-sized areas in minerals , 1998, Nature.

[52]  Chen,et al.  Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. , 1995, Physical review letters.

[53]  Thole,et al.  X-ray circular dichroism and local magnetic fields. , 1993, Physical review letters.

[54]  P. Carra X‐ray circular dichroism as a probe of orbital and spin magnetizations , 1992 .

[55]  Thole,et al.  X-ray circular dichroism as a probe of orbital magnetization. , 1992, Physical review letters.

[56]  C. Colliex,et al.  Electron-energy-loss-spectroscopy near-edge fine structures in the iron-oxygen system. , 1991, Physical review. B, Condensed matter.

[57]  Stephen J. Pennycook,et al.  High-resolution Z-contrast imaging of crystals , 1991 .

[58]  B. Josephson Possible new effects in superconductive tunnelling , 1962 .

[59]  H. Meissner Superconductivity of Contacts with Interposed Barriers , 1960 .

[60]  J. Slonczewski Origin of Magnetic Anisotropy in Cobalt-Substituted Magnetite , 1958 .