Finding Edge-Disjoint Paths in Partial k -Trees

Abstract. For a given graph G and p pairs (si,ti) , $1\leq i\leq p$ , of vertices in G , the edge-disjoint paths problem is to find p pairwise edge-disjoint paths Pi , $1\leq i\leq p$ , connecting si and ti . Many combinatorial problems can be efficiently solved for partial k -trees (graphs of treewidth bounded by a fixed integer k ), but the edge-disjoint paths problem is NP-complete even for partial 3 -trees. This paper gives two algorithms for the edge-disjoint paths problem on partial k -trees. The first one solves the problem for any partial k -tree G and runs in polynomial time if p=O( log n) and in linear time if p=O(1) , where n is the number of vertices in G . The second one solves the problem under some restriction on the location of terminal pairs even if $p\geq \log n$ .

[1]  Jens Vygen,et al.  NP-completeness of Some Edge-disjoint Paths Problems , 1995, Discret. Appl. Math..

[2]  Takao Nishizeki,et al.  Finding Steiner forests in planar graphs , 1990, SODA '90.

[3]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[4]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[5]  Takao Nishizeki,et al.  The Edge-Disjoint Paths Problem is NP-Complete for Partial k-Trees , 1998, ISAAC.

[6]  András Sebő Integer plane multiflows with a fixed number of demands , 1993 .

[7]  Hans L. Bodlaender,et al.  Polynomial Algorithms for Graph Isomorphism and Chromatic Index on Partial k-Trees , 1988, J. Algorithms.

[8]  Nobuji Saito,et al.  Planar Multicommodity Flows, Maximum Matchings and Negative Cycles , 1986, SIAM J. Comput..

[9]  Takao Nishizeki,et al.  Optimal parallel algorithm for edge-coloring partial k-trees with bounded degrees , 1994, Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN).

[10]  Nobuji Saito,et al.  A Linear-Time Routing Algorithm for Convex Grids , 1985, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[11]  Nobuji Saito,et al.  Linear-time computability of combinatorial problems on series-parallel graphs , 1982, JACM.

[12]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[13]  Karsten Weihe,et al.  A Linear-Time Algorithm for Edge-Disjoint Paths in Planar Graphs , 1993, ESA.

[14]  Takao Nishizeki,et al.  A Linear Algorithm for Edge-Coloring Series-Parallel Multigraphs , 1996, J. Algorithms.

[15]  Nobuji Saito,et al.  An Efficient Algorithm for Finding Multicommodity Flows in Planar Networks , 1985, SIAM J. Comput..

[16]  Kurt Mehlhorn,et al.  Routing through a rectangle , 1986, JACM.

[17]  Hans L. Boblaender Polynomial algorithms for graph isomorphism and chromatic index on partial k -trees , 1990 .

[18]  Shin-Ichi Nakano,et al.  Edge-Coloring Partial k-Trees , 1996, J. Algorithms.

[19]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[20]  Jan Arne Telle,et al.  Practical Algorithms on Partial k-Trees with an Application to Domination-like Problems , 1993, WADS.

[21]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[22]  Bruno Courcelle,et al.  An algebraic theory of graph reduction , 1993, JACM.

[23]  Takao Nishizeki,et al.  Edge-disjoint paths in a grid bounded by two nested rectangles , 1990, Discret. Appl. Math..

[24]  Kurt Mehlhorn,et al.  Routing Through a Generalized Switchbox , 1985, ICALP.

[25]  MATTHIAS MIDDENDORF,et al.  On the complexity of the disjoint paths problem , 1993, Comb..

[26]  N. S. Barnett,et al.  Private communication , 1969 .