Clinical Utility of Optical Coherence Tomography in Glaucoma

Optical coherence tomography (OCT) has established itself as the dominant imaging modality in the management of glaucoma and retinal diseases, providing high-resolution visualization of ocular microstructures and objective quantification of tissue thickness and change. This article reviews the history of OCT imaging with a specific focus on glaucoma. We examine the clinical utility of OCT with respect to diagnosis and progression monitoring, with additional emphasis on advances in OCT technology that continue to facilitate glaucoma research and inform clinical management strategies.

[1]  Jing He,et al.  Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. , 2010, Ophthalmology.

[2]  Robert N Weinreb,et al.  Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. , 2011, Ophthalmology.

[3]  Bo Wang,et al.  Reproducibility of In-Vivo OCT Measured Three-Dimensional Human Lamina Cribrosa Microarchitecture , 2014, PloS one.

[4]  Paaraj Dave,et al.  Diagnostic accuracy of posterior pole asymmetry analysis parameters of spectralis optical coherence tomography in detecting early unilateral glaucoma , 2015, Indian journal of ophthalmology.

[5]  S. Kaushik,et al.  Reproducibility of retinal nerve fiber layer measurements across the glaucoma spectrum using optical coherence tomography , 2015, Indian journal of ophthalmology.

[6]  Chris A Johnson,et al.  Classification of visual field abnormalities in the ocular hypertension treatment study. , 2000, Archives of ophthalmology.

[7]  Martin F. Kraus,et al.  In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as assessed by optical coherence tomography. , 2013, Investigative ophthalmology & visual science.

[8]  B. Chauhan,et al.  From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change. , 2013, American journal of ophthalmology.

[9]  Osama M. Ahmed,et al.  Segmental Analysis of Macular Layers in Patients With Unilateral Primary Open-Angle Glaucoma , 2016, Journal of glaucoma.

[10]  R. Pandey,et al.  Evaluation of optical coherence tomography and heidelberg retinal tomography parameters in detecting early and moderate glaucoma. , 2007, Investigative ophthalmology & visual science.

[11]  A Meyenberg,et al.  Morphometric assessment of normal, suspect and glaucomatous optic discs with Stratus OCT and HRT II , 2006, Eye.

[12]  Kyung Rim Sung,et al.  Comparison of glaucoma diagnostic Capabilities of Cirrus HD and Stratus optical coherence tomography. , 2009, Archives of ophthalmology.

[13]  M. Nicolela,et al.  Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. , 2013, Ophthalmology.

[14]  D. Hubel,et al.  The role of fixational eye movements in visual perception , 2004, Nature Reviews Neuroscience.

[15]  D. Hood,et al.  Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region. , 2014, Investigative ophthalmology & visual science.

[16]  G. Holló,et al.  Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma , 2011, Eye.

[17]  H. Quigley,et al.  The number of people with glaucoma worldwide in 2010 and 2020 , 2006, British Journal of Ophthalmology.

[18]  Guohua Shi,et al.  Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study , 2015, Graefe's Archive for Clinical and Experimental Ophthalmology.

[19]  C K Hitzenberger,et al.  Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison , 2008, Journal of biophotonics.

[20]  Jill E Keeffe,et al.  Detection of undiagnosed glaucoma by eye health professionals. , 2004, Ophthalmology.

[21]  Felipe A Medeiros,et al.  How should diagnostic tests be evaluated in glaucoma? , 2007, British Journal of Ophthalmology.

[22]  Hiroshi Ishikawa,et al.  Glaucoma discrimination of segmented cirrus spectral domain optical coherence tomography (SD-OCT) macular scans , 2012, British Journal of Ophthalmology.

[23]  A. Sommer,et al.  An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. , 1992, Ophthalmology.

[24]  J. Slakter,et al.  Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. , 2009, American journal of ophthalmology.

[25]  P. Lichter,et al.  The Collaborative Initial Glaucoma Treatment Study: study design, methods, and baseline characteristics of enrolled patients. , 1999, Ophthalmology.

[26]  S. Sharma,et al.  Programmed cell death of retinal ganglion cells during experimental glaucoma. , 1995, Experimental eye research.

[27]  David Huang,et al.  Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. , 2015, JAMA ophthalmology.

[28]  Na Rae Kim,et al.  Pattern of Macular Ganglion Cell-Inner Plexiform Layer Defect Generated by Spectral-Domain OCT in Glaucoma Patients and Normal Subjects , 2015, Journal of glaucoma.

[29]  E. O'Neill,et al.  Glaucomatous optic neuropathy evaluation project: a standardized internet system for assessing skills in optic disc examination , 2011, Clinical & experimental ophthalmology.

[30]  Shiv Saidha,et al.  Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. , 2012, Brain : a journal of neurology.

[31]  Robert Ritch,et al.  Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma. , 2012, Ophthalmology.

[32]  F. Medeiros,et al.  Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. , 2004, Archives of ophthalmology.

[33]  F. Horn,et al.  Longitudinal analysis of progression in glaucoma using spectral-domain optical coherence tomography. , 2013, Investigative ophthalmology & visual science.

[34]  C. Curcio,et al.  Topography of ganglion cells in human retina , 1990, The Journal of comparative neurology.

[35]  Shu Liu,et al.  Evaluation of retinal nerve fiber layer progression in glaucoma a prospective analysis with neuroretinal rim and visual field progression. , 2011, Ophthalmology.

[36]  G. Wollstein,et al.  Prediction of Glaucomatous Visual Field Progression: Pointwise analysis , 2014, Current eye research.

[37]  H. Park,et al.  Analysis of Macular and Peripapillary Choroidal Thickness in Glaucoma Patients by Enhanced Depth Imaging Optical Coherence Tomography , 2014, Journal of glaucoma.

[38]  H. Kim,et al.  Detection of glaucomatous progression by spectral-domain optical coherence tomography. , 2013, Ophthalmology.

[39]  Martin F. Kraus,et al.  Split-spectrum amplitude-decorrelation angiography with optical coherence tomography , 2012, Optics express.

[40]  F. Medeiros,et al.  Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. , 2005, American journal of ophthalmology.

[41]  Martin F. Kraus,et al.  Optical coherence tomography angiography of optic disc perfusion in glaucoma. , 2014, Ophthalmology.

[42]  Tin Aung,et al.  Sectoral variations of iridocorneal angle width and iris volume in Chinese Singaporeans: a swept-source optical coherence tomography study , 2014, Graefe's Archive for Clinical and Experimental Ophthalmology.

[43]  D. Friedman,et al.  Primary open-angle glaucoma , 2016, Nature Reviews Disease Primers.

[44]  J. D. Cascajosa,et al.  Diagnostic Ability of Fourier-Domain vs Time-Domain Optical Coherence Tomography for Glaucoma Detection , 2010 .

[45]  F. Medeiros,et al.  Assessment of rates of structural change in glaucoma using imaging technologies , 2011, Eye.

[46]  A. Heijl,et al.  THE FREQUENCY DISTRIBUTION OF EARLIEST GLAUCOMATOUS VISUAL FIELD DEFECTS DOCUMENTED BY AUTOMATIC PERIMETRY , 1984, Acta ophthalmologica.

[47]  Youngrok Lee,et al.  Macular and retinal nerve fiber layer thickness: which is more helpful in the diagnosis of glaucoma? , 2011, Investigative ophthalmology & visual science.

[48]  D B Henson,et al.  Frequency Distribution of Early Glaucomatous Visual Field Defects , 1986, American journal of optometry and physiological optics.

[49]  D B Henson,et al.  The correlation between optic nerve head topographic measurements, peripapillary nerve fibre layer thickness, and visual field indices in glaucoma , 2003, The British journal of ophthalmology.

[50]  William J Feuer,et al.  Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography. , 2009, Ophthalmology.

[51]  Anders Heijl,et al.  Glaucoma Detection by Stratus OCT , 2007, Journal of glaucoma.

[52]  Günther Meschke,et al.  The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach , 2011, Biomechanics and modeling in mechanobiology.

[53]  L. Zangwill,et al.  Association between quantitative nerve fiber layer measurement and visual field loss in glaucoma. , 1995, American journal of ophthalmology.

[54]  V. Polo,et al.  Diagnostic ability of macular nerve fiber layer thickness using new segmentation software in glaucoma suspects. , 2014, Investigative ophthalmology & visual science.

[55]  Christophe Chiquet,et al.  Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements. , 2014, Investigative ophthalmology & visual science.

[56]  Guihua Xu,et al.  Imaging the iris with swept-source optical coherence tomography: relationship between iris volume and primary angle closure. , 2013, Ophthalmology.

[57]  Kouros Nouri-Mahdavi,et al.  Comparison of retinal nerve fiber layer thickness and optic disk algorithms with optical coherence tomography to detect glaucoma. , 2006, American journal of ophthalmology.

[58]  D. Zack,et al.  Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. , 1995, Investigative ophthalmology & visual science.

[59]  Robert J Zawadzki,et al.  Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique. , 2009, Optics express.

[60]  J. Jonas,et al.  Pattern of glaucomatous neuroretinal rim loss. , 1993, Ophthalmology.

[61]  Pierre Kornprobst,et al.  Microsaccades enable efficient synchrony-based coding in the retina: a simulation study , 2016, Scientific Reports.

[62]  Christian Y Mardin,et al.  Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT. , 2009, Investigative ophthalmology & visual science.

[63]  F. Medeiros,et al.  Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements. , 2009, American journal of ophthalmology.

[64]  Lindsey S. Folio,et al.  Retinal nerve fibre layer and visual function loss in glaucoma: the tipping point , 2011, British Journal of Ophthalmology.

[65]  E. Werner,et al.  Location of early glaucomatous visual field defects. , 1980, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[66]  J. Fujimoto,et al.  Optical coherence tomography using a frequency-tunable optical source. , 1997, Optics letters.

[67]  R. Spaide,et al.  A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. , 2009, American journal of ophthalmology.

[68]  Gadi Wollstein,et al.  Macular assessment using optical coherence tomography for glaucoma diagnosis , 2012, British Journal of Ophthalmology.

[69]  J. Caprioli,et al.  Detection of Early Glaucoma With Optical Coherence Tomography (StratusOCT) , 2008, Journal of glaucoma.

[70]  G. Dunkelberger,et al.  Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. , 1989, American journal of ophthalmology.

[71]  M. Sugimoto,et al.  Symmetry Analysis for Detecting Early Glaucomatous Changes in Ocular Hypertension Using Optical Coherence Tomography , 2004, Japanese Journal of Ophthalmology.

[72]  D. Hood,et al.  Central Glaucomatous Damage of the Macula Can Be Overlooked by Conventional OCT Retinal Nerve Fiber Layer Thickness Analyses. , 2015, Translational vision science & technology.

[73]  J. Moreno-Montañés,et al.  Evaluation of Retinal nerve fiber layer thickness , mean deviation and visual field index in progressive glaucoma , 2015 .

[74]  Christopher Bowd,et al.  Learning from healthy and stable eyes: A new approach for detection of glaucomatous progression , 2015, Artif. Intell. Medicine.

[75]  Ilana Traynis,et al.  Prevalence and nature of early glaucomatous defects in the central 10° of the visual field. , 2014, JAMA ophthalmology.

[76]  Donald C. Hood,et al.  Glaucomatous damage of the macula , 2013, Progress in Retinal and Eye Research.

[77]  F. Medeiros,et al.  Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. , 2009, Investigative ophthalmology & visual science.

[78]  G. Holló,et al.  Evaluation of a New Software Version of the RTVue Optical Coherence Tomograph for Image Segmentation and Detection of Glaucoma in High Myopia , 2016, Journal of glaucoma.

[79]  Davin E Johnson,et al.  Comparison of retinal nerve fibre layer measurements from time domain and spectral domain optical coherence tomography systems. , 2009, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[80]  Marco Yu,et al.  Anterior chamber angle imaging with swept-source optical coherence tomography: measuring peripheral anterior synechia in glaucoma. , 2013, Ophthalmology.

[81]  Bill Bynum,et al.  Lancet , 2015, The Lancet.

[82]  David Huang,et al.  Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. , 2006, Ophthalmology.

[83]  F. Medeiros,et al.  Spectral-Domain Optical Coherence Tomography for Glaucoma Diagnosis , 2015, The open ophthalmology journal.

[84]  K. Sung,et al.  Lamina Cribrosa-Related Parameters Assessed by Optical Coherence Tomography for Prediction of Future Glaucoma Progression , 2016, Current eye research.

[85]  W. Feuer,et al.  Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes. , 2010, Investigative ophthalmology & visual science.

[86]  Bo Wang,et al.  Repeatability of in Vivo 3d Lamina Cribrosa Microarchitecture Using Adaptive Optics Spectral Domain Optical Coherence Tomography References and Links , 2022 .

[87]  H. Shin,et al.  Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging. , 2014, American journal of ophthalmology.

[88]  K. Park,et al.  Peripheral lamina cribrosa depth in primary open-angle glaucoma: a swept-source optical coherence tomography study of lamina cribrosa , 2015, Eye.

[89]  Robert N Weinreb,et al.  Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma. , 2012, Investigative ophthalmology & visual science.

[90]  A. Tuulonen,et al.  Rate and pattern of neuroretinal rim area decrease in ocular hypertension and glaucoma. , 1992, Archives of ophthalmology.

[91]  Bettina Selig,et al.  Spatial pattern of glaucomatous visual field loss obtained with regionally condensed stimulus arrangements. , 2010, Investigative ophthalmology & visual science.

[92]  Dilraj S Grewal,et al.  Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography , 2013, Current opinion in ophthalmology.

[93]  Robert N Weinreb,et al.  Estimating Lead Time Gained by Optical Coherence Tomography in Detecting Glaucoma before Development of Visual Field Defects. , 2015, Ophthalmology.

[94]  Giovanni Staurenghi,et al.  Three-Dimensional Morphometric Analysis of the Iris by Swept-Source Anterior Segment Optical Coherence Tomography in a Caucasian Population. , 2015, Investigative ophthalmology & visual science.

[95]  Tetsuya Yamamoto,et al.  Development of Glaucomatous Visual Field Defects in Preperimetric Glaucoma Patients Within 3 Years of Diagnosis , 2016, Journal of glaucoma.

[96]  G. Wollstein,et al.  Retinal nerve fiber layer atrophy is associated with visual field loss over time in glaucoma suspect and glaucomatous eyes. , 2013, American journal of ophthalmology.

[97]  A. Fercher,et al.  Eye-length measurement by interferometry with partially coherent light. , 1988, Optics letters.

[98]  Gianmarco Vizzeri,et al.  Factors Affecting Cirrus-HD OCT Optic Disc Scan Quality: A Review with Case Examples , 2015, Journal of ophthalmology.

[99]  M. Nicolela,et al.  Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. , 2012, Investigative ophthalmology & visual science.

[100]  C. Burgoyne A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. , 2011, Experimental eye research.

[101]  Shu Liu,et al.  Anterior chamber angle imaging with swept-source optical coherence tomography: an investigation on variability of angle measurement. , 2011, Investigative ophthalmology & visual science.

[102]  J. Fujimoto,et al.  Optical coherence tomography: A new tool for glaucoma diagnosis , 1995, Current opinion in ophthalmology.

[103]  J. Fujimoto,et al.  Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. , 1996, Ophthalmology.

[104]  R. Bourne,et al.  Relationship between patterns of visual field loss and retinal nerve fiber layer thickness measurements. , 2006, American journal of ophthalmology.

[105]  D E Gaasterland,et al.  The Advanced Glaucoma Intervention Study (AGIS): 1. Study design and methods and baseline characteristics of study patients. , 1994, Controlled clinical trials.

[106]  A. Turpin,et al.  Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement. , 2014, Investigative ophthalmology & visual science.

[107]  D. R. Anderson,et al.  Early foveal involvement and generalized depression of the visual field in glaucoma. , 1984, Archives of ophthalmology.

[108]  Robert N Weinreb,et al.  Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes. , 2003, Ophthalmology.

[109]  Robert N Weinreb,et al.  Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. , 2010, Ophthalmology.

[110]  Makoto Nakamura,et al.  Regional relationship between retinal nerve fiber layer thickness and corresponding visual field sensitivity in glaucomatous eyes. , 2008, Archives of ophthalmology.

[111]  K. Sung,et al.  Progression of Retinal Nerve Fiber Layer Thinning in Glaucoma Assessed by Cirrus Optical Coherence Tomography-guided Progression Analysis , 2013, Current eye research.

[112]  D. R. Anderson,et al.  The mode of progressive disc cupping in ocular hypertension and glaucoma. , 1980, Archives of ophthalmology.

[113]  C. K. Park,et al.  Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. , 2012, Ophthalmology.

[114]  W. Feuer,et al.  Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. , 2011, Investigative ophthalmology & visual science.

[115]  J. Caprioli,et al.  Optical coherence tomography to detect and manage retinal disease and glaucoma. , 2004, American journal of ophthalmology.

[116]  P. Foster,et al.  The definition and classification of glaucoma in prevalence surveys , 2002, The British journal of ophthalmology.

[117]  Jean-Claude Mwanza,et al.  Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. , 2012, Ophthalmology.

[118]  Lingfeng Yu,et al.  Doppler variance imaging for three-dimensional retina and choroid angiography. , 2010, Journal of biomedical optics.

[119]  J. Duker,et al.  Imaging of macular diseases with optical coherence tomography. , 1995, Ophthalmology.

[120]  Robert N Weinreb,et al.  Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. , 2013, Investigative ophthalmology & visual science.

[121]  D. Budenz,et al.  Optical coherence tomography platforms and parameters for glaucoma diagnosis and progression , 2016, Current opinion in ophthalmology.

[122]  Robert N Weinreb,et al.  Strategies for improving early detection of glaucoma: the combined structure–function index , 2014, Clinical ophthalmology.

[123]  F. Medeiros,et al.  Diagnostic ability of retinal nerve fiber layer imaging by swept-source optical coherence tomography in glaucoma. , 2015, American journal of ophthalmology.

[124]  F. Medeiros,et al.  Effect of disease severity on the performance of Cirrus spectral-domain OCT for glaucoma diagnosis. , 2010, Investigative ophthalmology & visual science.

[125]  Joel S Schuman,et al.  Spectral domain optical coherence tomography for glaucoma (an AOS thesis). , 2008, Transactions of the American Ophthalmological Society.

[126]  Farzaneh Naghizadeh,et al.  Influence of a New Software Version of the RTVue-100 Optical Coherence Tomograph on the Detection of Glaucomatous Structural Progression , 2015, European journal of ophthalmology.

[127]  A. Sommer,et al.  Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. , 1991, Archives of ophthalmology.

[128]  F. Medeiros,et al.  The pathophysiology and treatment of glaucoma: a review. , 2014, JAMA.

[129]  K. Mansouri,et al.  Improved visualization of deep ocular structures in glaucoma using high penetration optical coherence tomography , 2013, Expert review of medical devices.

[130]  F. Shiraga,et al.  Enhanced depth imaging spectral-domain optical coherence tomography of subfoveal choroidal thickness in normal Japanese eyes , 2012, Japanese Journal of Ophthalmology.

[131]  F. Medeiros,et al.  Diagnostic Ability of Macular Ganglion Cell Inner Plexiform Layer Measurements in Glaucoma Using Swept Source and Spectral Domain Optical Coherence Tomography , 2015, PloS one.

[132]  Hye Jin Lee,et al.  Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography. , 2012, Investigative ophthalmology & visual science.

[133]  A. Sommer,et al.  Repeatability of the Glaucoma Hemifield Test in automated perimetry. , 1995, Investigative ophthalmology & visual science.

[134]  A Heijl,et al.  Early Manifest Glaucoma Trial: design and baseline data. , 1999, Ophthalmology.

[135]  Sooji Jeon,et al.  Lamina Cribrosa Depth is Associated With the Cup-to-Disc Ratio in Eyes With Large Optic Disc Cupping and Cup-to-Disc Ratio Asymmetry , 2016, Journal of glaucoma.

[136]  K. Trinkaus,et al.  Alterations in the morphology of lamina cribrosa pores in glaucomatous eyes , 2004, British Journal of Ophthalmology.

[137]  Robert N Weinreb,et al.  Detection of localized retinal nerve fiber layer defects with posterior pole asymmetry analysis of spectral domain optical coherence tomography. , 2012, Investigative ophthalmology & visual science.

[138]  H. Quigley Number of people with glaucoma worldwide. , 1996, The British journal of ophthalmology.

[139]  Eun Suk Lee,et al.  Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. , 2010, Investigative ophthalmology & visual science.

[140]  James G. Fujimoto,et al.  Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography , 2009, British Journal of Ophthalmology.

[141]  T. Nakazawa Ocular Blood Flow and Influencing Factors for Glaucoma , 2016, Asia-Pacific journal of ophthalmology.

[142]  H. Quigley,et al.  Comparison of optic disc features in low-tension and typical open-angle glaucoma. , 1987, Ophthalmic surgery.

[143]  Gadi Wollstein,et al.  Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis , 2010, British Journal of Ophthalmology.

[144]  Sung Yong Kang,et al.  Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. , 2010, Investigative ophthalmology & visual science.

[145]  C. Girkin,et al.  Artifacts on the Optic Nerve Head Analysis of the Optical Coherence Tomography in Glaucomatous and Nonglaucomatous Eyes , 2009, Journal of glaucoma.

[146]  Hiroshi Ishikawa,et al.  Retinal nerve fiber layer thickness measurement comparability between time domain optical coherence tomography (OCT) and spectral domain OCT. , 2010, Investigative ophthalmology & visual science.

[147]  D. Friedman,et al.  Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes. , 2007, Ophthalmology.

[148]  J. G. Babu,et al.  Diagnostic capability of optical coherence tomography (Stratus OCT 3) in early glaucoma. , 2007, Ophthalmology.

[149]  M. Hangai,et al.  Three-dimensional imaging of macular inner structures in glaucoma by using spectral-domain optical coherence tomography. , 2011, Investigative ophthalmology & visual science.

[150]  R. Varma,et al.  Changes in optic disk characteristics and number of nerve fibers in experimental glaucoma. , 1992, American journal of ophthalmology.

[151]  A M McKendrick,et al.  Measurement error of visual field tests in glaucoma , 2003, The British journal of ophthalmology.

[152]  Dong Myung Kim,et al.  Ability of Stratus OCT to detect progressive retinal nerve fiber layer atrophy in glaucoma. , 2009, Investigative ophthalmology & visual science.

[153]  Robert N Weinreb,et al.  Combining structural and functional measurements to improve detection of glaucoma progression using Bayesian hierarchical models. , 2011, Investigative ophthalmology & visual science.

[154]  Robert N Weinreb,et al.  Combining structural and functional measurements to improve estimates of rates of glaucomatous progression. , 2012, American journal of ophthalmology.

[155]  J. Schuman,et al.  Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography. , 2016, American journal of ophthalmology.

[156]  Youngrok Lee,et al.  Glaucoma Diagnostic Capabilities of Optic Nerve Head Parameters as Determined by Cirrus HD Optical Coherence Tomography , 2012, Journal of glaucoma.

[157]  A. Sommer,et al.  The nerve fiber layer in the diagnosis of glaucoma. , 1977, Archives of ophthalmology.

[158]  Syril K Dorairaj,et al.  Anterior segment imaging in glaucoma: An updated review , 2015, Indian journal of ophthalmology.

[159]  J. Funk,et al.  Posterior pole asymmetry analysis with optical coherence tomography. , 2014, Klinische Monatsblatter fur Augenheilkunde.

[160]  F. Medeiros,et al.  Assessment of choroidal thickness and volume during the water drinking test by swept-source optical coherence tomography. , 2013, Ophthalmology.

[161]  Robert N. Weinreb,et al.  Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. , 2010, Ophthalmology.

[162]  B. Chauhan,et al.  Longitudinal changes in the visual field and optic disc in glaucoma , 2005, Progress in Retinal and Eye Research.

[163]  Barry Cense,et al.  Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources. , 2009, Optics express.

[164]  Shu Liu,et al.  Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. , 2010, Investigative ophthalmology & visual science.

[165]  Youngrok Lee,et al.  Progression detection capability of macular thickness in advanced glaucomatous eyes. , 2012, Ophthalmology.

[166]  G. Wollstein,et al.  Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. , 2009, Ophthalmology.

[167]  Chris A. Johnson,et al.  The Nature of Macular Damage in Glaucoma as Revealed by Averaging Optical Coherence Tomography Data. , 2012, Translational vision science & technology.

[168]  Jullia A. Rosdahl,et al.  Novel software strategy for glaucoma diagnosis: asymmetry analysis of retinal thickness. , 2011, Archives of ophthalmology.

[169]  Masanori Hangai,et al.  Three-dimensional imaging of lamina cribrosa defects in glaucoma using swept-source optical coherence tomography. , 2013, Investigative ophthalmology & visual science.

[170]  Robert Ritch,et al.  Initial arcuate defects within the central 10 degrees in glaucoma. , 2011, Investigative ophthalmology & visual science.

[171]  F. Medeiros,et al.  Prediction of functional loss in glaucoma from progressive optic disc damage. , 2009, Archives of ophthalmology.

[172]  M. Hangai,et al.  Lamina Cribrosa Depth Variation Measured by Spectral-Domain Optical Coherence Tomography Within and Between Four Glaucomatous Optic Disc Phenotypes. , 2015, Investigative ophthalmology & visual science.

[173]  M. Jankov,et al.  Correlation Between Retinal Nerve Fiber Layer and Disc Parameters in Glaucoma Suspected Eyes , 2014, Medical archives.

[174]  Eun Ji Lee,et al.  Comparison of the Abilities of SD-OCT and SS-OCT in Evaluating the Thickness of the Macular Inner Retinal Layer for Glaucoma Diagnosis , 2016, PloS one.

[175]  G. Wollstein,et al.  Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. , 2005, Archives of ophthalmology.

[176]  C. O'brien,et al.  Three dimensional analysis of the lamina cribrosa in glaucoma , 2004, British Journal of Ophthalmology.

[177]  A. Ambrosi,et al.  Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments. , 2012, Investigative Ophthalmology and Visual Science.

[178]  I. Schmidtmann,et al.  Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography , 2011, Graefe's Archive for Clinical and Experimental Ophthalmology.

[179]  Nicholas G Strouthidis,et al.  Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement. , 2006, Investigative ophthalmology & visual science.

[180]  Douglas R. Anderson,et al.  Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. , 2011, Ophthalmology.

[181]  Atsuya Miki,et al.  Comparison of enhanced depth imaging and high-penetration optical coherence tomography for imaging deep optic nerve head and parapapillary structures , 2013, Clinical ophthalmology.

[182]  Mitra Sehi,et al.  Detection of Progressive Retinal Nerve Fiber Layer Thickness Loss With Optical Coherence Tomography Using 4 Criteria for Functional Progression , 2010, Journal of glaucoma.

[183]  Werner Eb,et al.  Location of early glaucomatous visual field defects. , 1980 .

[184]  Y. Kiuchi,et al.  The Applicability of Ganglion Cell Complex Parameters Determined From SD-OCT Images to Detect Glaucomatous Eyes , 2013, Journal of glaucoma.

[185]  Ningli Wang,et al.  Comparative study of retinal nerve fibre layer measurement by RTVue OCT and GDx VCC , 2010, British Journal of Ophthalmology.

[186]  B. Bengtsson,et al.  Performance of time-domain and spectral-domain Optical Coherence Tomography for glaucoma screening , 2012, Acta ophthalmologica.

[187]  Anders Heijl,et al.  Glaucoma detection using different Stratus optical coherence tomography protocols. , 2006, Acta ophthalmologica Scandinavica.

[188]  Makoto Nakamura,et al.  Comparative assessment for the ability of Cirrus, RTVue, and 3D-OCT to diagnose glaucoma. , 2013, Investigative ophthalmology & visual science.

[189]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[190]  Iwona Gorczynska,et al.  Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. , 2008, Investigative ophthalmology & visual science.