Polyester–melamine coil coating formulation reinforced with surface-modified cellulose nanofibrils

[1]  E. Malmström,et al.  Nanolatex architectonics: Influence of cationic charge density and size on their adsorption onto surfaces with a 2D or 3D distribution of anionic groups. , 2022, Journal of colloid and interface science.

[2]  E. Cranston,et al.  Fundamentals of cellulose lightweight materials: bio-based assemblies with tailored properties , 2021 .

[3]  J. Dai,et al.  Developing fibrillated cellulose as a sustainable technological material , 2021, Nature.

[4]  J. Pan,et al.  Comparative study of CNC and CNF as additives in waterborne acrylate-based anti-corrosion coatings , 2020, Journal of Dispersion Science and Technology.

[5]  J. Youngblood,et al.  Recent Developments in Cellulose Nanomaterial Composites , 2020, Advanced materials.

[6]  R. Nixon,et al.  Polyester Resins , 2019, Kanerva’s Occupational Dermatology.

[7]  M. Johansson,et al.  Bio-based multifunctional fatty acid methyl esters as reactive diluents in coil coatings , 2019, Progress in Organic Coatings.

[8]  S. Eichhorn,et al.  The effect of the dispersion of microfibrillated cellulose on the mechanical properties of melt-compounded polypropylene–polyethylene copolymer , 2019, Cellulose.

[9]  Reaz A. Chowdhury,et al.  Surface hydrophobization of TEMPO-oxidized cellulose nanofibrils (CNFs) using a facile, aqueous modification process and its effect on properties of epoxy nanocomposites , 2019, Cellulose.

[10]  J. Engström,et al.  Exploiting poly(ɛ‐caprolactone) and cellulose nanofibrils modified with latex nanoparticles for the development of biodegradable nanocomposites , 2019 .

[11]  Q. Shang,et al.  Bio-inspired hydrophobic modification of cellulose nanocrystals with castor oil. , 2018, Carbohydrate polymers.

[12]  L. Berglund,et al.  Improved Cellulose Nanofibril Dispersion in Melt-Processed Polycaprolactone Nanocomposites by a Latex-Mediated Interphase and Wet Feeding as LDPE Alternative , 2018 .

[13]  H. Yano,et al.  Designing cellulose nanofiber surface for high density polyethylene reinforcement , 2018, Cellulose.

[14]  A. Dufresne Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  L. Wågberg,et al.  Insights into the EDC-mediated PEGylation of cellulose nanofibrils and their colloidal stability. , 2018, Carbohydrate polymers.

[16]  H. Yano,et al.  Strategy for the Improvement of the Mechanical Properties of Cellulose Nanofiber-Reinforced High-Density Polyethylene Nanocomposites Using Diblock Copolymer Dispersants. , 2017, ACS applied materials & interfaces.

[17]  Maziar Sedighi Moghaddam,et al.  One-step superhydrophobic coating using hydrophobized cellulose nanofibrils , 2017 .

[18]  J. Engström,et al.  Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study. , 2017, ACS applied materials & interfaces.

[19]  Sabu Thomas,et al.  Recent developments on nanocellulose reinforced polymer nanocomposites: A review , 2017 .

[20]  Gustav Nyström,et al.  Formation of Colloidal Nanocellulose Glasses and Gels. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[21]  Liqing Wei,et al.  Chemical modification of nanocellulose with canola oil fatty acid methyl ester. , 2017, Carbohydrate polymers.

[22]  A. Dufresne Cellulose nanomaterial reinforced polymer nanocomposites , 2017 .

[23]  R. Pelton,et al.  One-Pot Water-Based Hydrophobic Surface Modification of Cellulose Nanocrystals Using Plant Polyphenols , 2017 .

[24]  L. Wågberg,et al.  Soft and rigid core latex nanoparticles prepared by RAFT-mediated surfactant-free emulsion polymerization for cellulose modification – a comparative study , 2017 .

[25]  M. Hsieh,et al.  Hazy Transparent Cellulose Nanopaper , 2017, Scientific Reports.

[26]  J. Bras,et al.  Production of cellulose nanofibrils: A review of recent advances , 2016 .

[27]  A. Sneck,et al.  Use of cellulose nanofibrils (CNF) in coating colors , 2015 .

[28]  J. Bras,et al.  Green process for chemical functionalization of nanocellulose with carboxylic acids. , 2014, Biomacromolecules.

[29]  L. Wågberg,et al.  Modification of cellulose model surfaces by cationic polymer latexes prepared by RAFT-mediated surfactant-free emulsion polymerization , 2014 .

[30]  Youssef Habibi,et al.  Key advances in the chemical modification of nanocelluloses. , 2014, Chemical Society reviews.

[31]  S. B. Lindström,et al.  A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation , 2013 .

[32]  M. Johansson,et al.  Novel coil coating systems using fatty acid based reactive diluents , 2012 .

[33]  D. Gardner,et al.  Drying cellulose nanofibrils: in search of a suitable method , 2012, Cellulose.

[34]  Evan S. Beach,et al.  Derivation and synthesis of renewable surfactants. , 2012, Chemical Society reviews.

[35]  A. Isogai,et al.  TEMPO-oxidized cellulose nanofibrils dispersed in organic solvents. , 2011, Biomacromolecules.

[36]  A. Dufresne,et al.  Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions , 2011 .

[37]  Julien Bras,et al.  Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications , 2010 .

[38]  Akira Isogai,et al.  Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. , 2009, Biomacromolecules.

[39]  M. Johansson,et al.  Fatty Acid Methyl Ester as Reactive Diluent in Thermally Cured Solvent-Borne Coil-Coatings : The Effect of Fatty Acid Pattern on the Curing Performance and Final Properties , 2008 .

[40]  M. Johansson,et al.  The Effect of Fatty Acid Methyl Esters on the Curing Performance and Final Properties of Thermally Cured Solvent-Borne Coil Coatings , 2007 .

[41]  M. Johansson,et al.  A model study on fatty acid methyl esters as reactive diluents in thermally cured coil coating systems , 2006 .

[42]  D. Klemm,et al.  Cellulose: fascinating biopolymer and sustainable raw material. , 2005, Angewandte Chemie.

[43]  Alastair Marrion,et al.  Application and applications , 2004 .

[44]  Takayoshi Matsumoto,et al.  Effect of solvent exchange on the solid structure and dissolution behavior of cellulose. , 2003, Biomacromolecules.

[45]  P. Larkin,et al.  Vibrational analysis of some important group frequencies of melamine derivatives containing methoxymethyl, and carbamate substituents: mechanical coupling of substituent vibrations with triazine ring modes , 1998 .

[46]  Véronique Favier,et al.  Nanocomposite materials from latex and cellulose whiskers , 1995 .

[47]  M. Johansson,et al.  PDMAEMA from α to ω chain ends: tools for elucidating the structure of poly(2-(dimethylamino)ethyl methacrylate) , 2023, Polymer Chemistry.

[48]  M. Ferreira,et al.  Ranking high-quality paint systems using EIS. Part I: intact coatings , 2003 .

[49]  D. Klemm Fundamentals and analytical methods , 1998 .