Spectra of general hypergraphs

Abstract Here, we show a method to reconstruct connectivity hypermatrices of a general hypergraph (without any self loop or multiple edge) using tensor. We also study the different spectral properties of these hypermatrices and find that these properties are similar for graphs and uniform hypergraphs. The representation of a connectivity hypermatrix that is proposed here can be very useful for the further development in spectral hypergraph theory.

[1]  F. Chung The Laplacian of a Hypergraph. , 1992 .

[2]  J. Shao,et al.  On some properties of the determinants of tensors , 2013 .

[3]  Kung-Ching Chang,et al.  On eigenvalue problems of real symmetric tensors , 2009 .

[4]  J. Shao A general product of tensors with applications , 2012, 1212.1535.

[5]  Liqun Qi,et al.  The Laplacian of a uniform hypergraph , 2015, J. Comb. Optim..

[6]  Anirban Banerjee,et al.  On the spectrum of the normalized graph Laplacian , 2007, 0705.3772.

[7]  Peter J. Cameron,et al.  Graphs and matrices , 2004 .

[8]  V. Voloshin Introduction to Graph and Hypergraph Theory , 2013 .

[9]  Qingzhi Yang,et al.  Further Results for Perron-Frobenius Theorem for Nonnegative Tensors , 2010, SIAM J. Matrix Anal. Appl..

[10]  L. Qi,et al.  Regular Uniform Hypergraphs, $s$-Cycles, $s$-Paths and Their largest Laplacian H-Eigenvalues , 2013, 1309.2163.

[11]  L. Qi,et al.  Cored Hypergraphs, Power Hypergraphs and Their Laplacian H-Eigenvalues , 2013, 1304.6839.

[12]  Joshua N. Cooper,et al.  Spectra of Uniform Hypergraphs , 2011, 1106.4856.

[13]  Chen Ling,et al.  On determinants and eigenvalue theory of tensors , 2013, J. Symb. Comput..

[14]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[15]  Q. L H-EIGENVALUES OF LAPLACIAN AND SIGNLESS LAPLACIAN TENSORS , 2014 .

[16]  L. Qi,et al.  The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph , 2013, 1304.1315.

[17]  Liqun Qi,et al.  The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph , 2013, Discret. Appl. Math..

[18]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[19]  Tan Zhang,et al.  On Spectral Hypergraph Theory of the Adjacency Tensor , 2012, Graphs Comb..

[20]  Michael K. Ng,et al.  Finding the Largest Eigenvalue of a Nonnegative Tensor , 2009, SIAM J. Matrix Anal. Appl..

[21]  K. Pearson Spectral hypergraph theory of the adjacency hypermatrix and matroids , 2015 .

[22]  Guoyin Li,et al.  The Z‐eigenvalues of a symmetric tensor and its application to spectral hypergraph theory , 2013, Numer. Linear Algebra Appl..

[23]  Qingzhi Yang,et al.  Further Results for Perron-Frobenius Theorem for Nonnegative Tensors II , 2011, SIAM J. Matrix Anal. Appl..

[24]  Kung-Ching Chang,et al.  Perron-Frobenius theorem for nonnegative tensors , 2008 .