Molecular simulation of ionic liquids: current status and future opportunities

Ionic liquids are salts that are liquid near ambient conditions. Interest in these unusual compounds has exploded in the last decade, both at the academic and commercial level. Molecular simulations based on classical potentials have played an important role in helping researchers understand how condensed phase properties of these materials are linked to chemical structure and composition. Simulations have also predicted many properties and unexpected phenomena that have subsequently been confirmed experimentally. The beneficial impact molecular simulations have had on this field is due in large part to excellent timing. Just when computing power and simulation methods matured to the point where complex fluids could be studied in great detail, a new class of materials virtually unknown to experimentalists came on the scene and demanded attention. This topical review explores some of the history of ionic liquid molecular simulations, and then gives examples of the recent use of molecular dynamics and Monte Carlo simulation in understanding the structure of ionic liquids, the sorption of small molecules in ionic liquids, the nature of ionic liquids in the vapor phase and the dynamics of ionic liquids. This review concludes with a discussion of some of the outstanding problems facing the ionic liquid modeling community and how condensed phase molecular simulation experts not presently working on ionic liquids might help advance the field.

[1]  G. Maurer,et al.  Solubility of CO2 in the ionic liquid [hmim][Tf2N] , 2006 .

[2]  J. Brennecke,et al.  Thermodynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate from Monte Carlo simulations , 2002 .

[3]  H. Stassen,et al.  Computational Study of Room Temperature Molten Salts Composed by 1-Alkyl-3-methylimidazolium CationsForce-Field Proposal and Validation , 2002 .

[4]  J. Brennecke,et al.  Why Is CO2 so soluble in imidazolium-based ionic liquids? , 2004, Journal of the American Chemical Society.

[5]  W. Shi,et al.  Molecular simulation and regular solution theory modeling of pure and mixed gas absorption in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]). , 2008, The journal of physical chemistry. B.

[6]  Stefano Passerini,et al.  NMR investigation of ionic liquid-LiX mixtures: pyrrolidinium cations and TFSI- anions. , 2005, The journal of physical chemistry. B.

[7]  Bin Chen,et al.  Simulating vapor-liquid nucleation of water: A combined histogram-reweighting and aggregation-volume-bias Monte Carlo investigation for fixed-charge and polarizable models. , 2005, The journal of physical chemistry. A.

[8]  Xiaoliang Yuan,et al.  New force field for molecular simulation of guanidinium-based ionic liquids. , 2006, The journal of physical chemistry. B.

[9]  Luís M. N. B. F. Santos,et al.  Ionic liquids: first direct determination of their cohesive energy. , 2007, Journal of the American Chemical Society.

[10]  P. K. Mandal,et al.  On the optical properties of the imidazolium ionic liquids. , 2005, The journal of physical chemistry. B.

[11]  Sheila N. Baker,et al.  Temperature-dependent microscopic solvent properties of ‘dry’ and ‘wet’ 1-butyl-3-methylimidazolium hexafluorophosphate: correlation with ET(30) and Kamlet–Taft polarity scales , 2002 .

[12]  Travis D. Boone,et al.  End-bridging Monte Carlo: A fast algorithm for atomistic simulation of condensed phases of long polymer chains , 1999 .

[13]  C. Angell,et al.  Parallel developments in aprotic and protic ionic liquids: physical chemistry and applications. , 2007, Accounts of chemical research.

[14]  J. Andreu,et al.  Modeling the solubility behavior of CO(2), H(2), and Xe in [C(n)-mim][Tf(2)N] ionic liquids. , 2008, The journal of physical chemistry. B.

[15]  E. di Cola,et al.  Nanoscale segregation in room temperature ionic liquids. , 2007, The journal of physical chemistry. B.

[16]  A. Pádua,et al.  Molecular Force Field for Ionic Liquids Composed of Triflate or Bistriflylimide Anions , 2004 .

[17]  A. Pádua,et al.  Molecular solutes in ionic liquids: a structural perspective. , 2007, Accounts of chemical research.

[18]  S. Dzyuba,et al.  Expanding the polarity range of ionic liquids , 2002 .

[19]  C. Santini,et al.  Organized 3D-alkyl imidazolium ionic liquids could be used to control the size of in situ generated ruthenium nanoparticles? , 2009 .

[20]  D. Theodorou,et al.  Prediction of Sorption of CO2 in Glassy Atactic Polystyrene at Elevated Pressures Through a New Computational Scheme , 2009 .

[21]  K. R. Harris,et al.  Effect of pressure on transport properties of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. , 2007, The journal of physical chemistry. B.

[22]  M. Kanakubo,et al.  Self-diffusion coefficients of 1-butyl-3-methylimidazolium hexafluorophosphate with pulsed-field gradient spin-echo NMR technique , 2005 .

[23]  Xuhui Huang,et al.  Molecular dynamics study of the temperature-dependent Optical Kerr effect spectra and intermolecular dynamics of room temperature ionic liquid 1-methoxyethylpyridinium dicyanoamide. , 2008, The journal of physical chemistry. B.

[24]  J. Brennecke,et al.  Anion effects on gas solubility in ionic liquids. , 2005, The journal of physical chemistry. B.

[25]  W. Shi,et al.  Atomistic simulation of the absorption of carbon dioxide and water in the ionic liquid 1-n-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide ([hmim][Tf2N]. , 2008, The journal of physical chemistry. B.

[26]  J. Brennecke,et al.  High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids , 2004 .

[27]  Athanassios Z. Panagiotopoulos,et al.  Phase behavior of the restricted primitive model and square-well fluids from Monte Carlo simulations in the grand canonical ensemble , 1999 .

[28]  S. Balasubramanian,et al.  Dynamics in a room-temperature ionic liquid: a computer simulation study of 1,3-dimethylimidazolium chloride. , 2005, The Journal of chemical physics.

[29]  W. Shi,et al.  Absorption of CO2 in the ionic liquid 1-n-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([hmim][FEP]): a molecular view by computer simulations. , 2009, The journal of physical chemistry. B.

[30]  J. Ilja Siepmann,et al.  Intermolecular potentials for branched alkanes and the vapour-liquid phase equilibria of n-heptane, 2-methylhexane, and 3-ethylpentane , 1997 .

[31]  M. Shiflett,et al.  Solubility of CO2 in room temperature ionic liquid [hmim][Tf2N]. , 2007, The journal of physical chemistry. B.

[32]  H. Stassen,et al.  A force field for liquid state simulations on room temperature molten salts: 1-Ethyl-3-methylimidazolium tetrachloroaluminate , 2002 .

[33]  U. Kragl,et al.  Do we understand the volatility of ionic liquids? , 2007, Angewandte Chemie.

[34]  Wenchuan Wang,et al.  A refined force field for molecular simulation of imidazolium-based ionic liquids , 2004 .

[35]  Ralf Ludwig,et al.  Molecular dynamic simulations of ionic liquids: a reliable description of structure, thermodynamics and dynamics. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[36]  Wei Shi,et al.  Continuous Fractional Component Monte Carlo:  An Adaptive Biasing Method for Open System Atomistic Simulations. , 2007, Journal of chemical theory and computation.

[37]  O. Borodin,et al.  Viscosity of a room temperature ionic liquid: predictions from nonequilibrium and equilibrium molecular dynamics simulations. , 2009, Journal of Physical Chemistry B.

[38]  J. Oberbrodhage Phase transfer catalysts between polar and non-polar media: a molecular dynamics simulation of tetrabutylammonium iodide at the formamide/hexane interface , 2000 .

[39]  E. Maginn,et al.  Molecular Dynamics Study of the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate , 2002 .

[40]  G. Voth,et al.  Unique spatial heterogeneity in ionic liquids. , 2005, Journal of the American Chemical Society.

[41]  B. Berne,et al.  Computer simulation of a green chemistry room-temperature ionic solvent , 2002 .

[42]  A. Voter Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events , 1997 .

[43]  Edward J Maginn,et al.  Atomistic simulation of the thermodynamic and transport properties of ionic liquids. , 2007, Accounts of chemical research.

[44]  Jaehoon Jung,et al.  Molecular dynamics study of the ionic conductivity of 1-n-butyl-3-methylimidazolium salts as ionic liquids , 2005 .

[45]  R. Lynden-Bell,et al.  Why are aromatic compounds more soluble than aliphatic compounds in dimethylimidazolium ionic liquids? A simulation study , 2003 .

[46]  Wenchuan Wang,et al.  A novel united-atom force field for imidazolium-based ionic liquids. , 2006, Physical chemistry chemical physics : PCCP.

[47]  C. Dellago,et al.  Transition Path Sampling and Other Advanced Simulation Techniques for Rare Events , 2009 .

[48]  J. Brennecke,et al.  Solution Thermodynamics of Imidazolium-Based Ionic Liquids and Water , 2001 .

[49]  R. Lynden-Bell,et al.  Solvation of small molecules in imidazolium ionic liquids: a simulation study , 2002 .

[50]  H. D. Cochran,et al.  Continuum configurational bias Monte-Carlo studies of alkanes and polyethylene , 1993 .

[51]  Jason E. Bara,et al.  Room-Temperature Ionic Liquids: Temperature Dependence of Gas Solubility Selectivity , 2008 .

[52]  A. Pádua,et al.  Nanostructural organization in ionic liquids. , 2006, The journal of physical chemistry. B.

[53]  E. Hawlicka,et al.  Molecular dynamics simulations of the aqueous solution of tetramethylammonium chloride , 1997 .

[54]  G. Maurer,et al.  Solubility of CO2, CO, and H2 in the ionic liquid [bmim][PF6] from Monte Carlo simulations. , 2005, The journal of physical chemistry. B.

[55]  S. Price,et al.  Intermolecular potentials for simulations of liquid imidazolium salts , 2001 .

[56]  R. Lynden-Bell,et al.  A Simulation Study of Water−Dialkylimidazolium Ionic Liquid Mixtures , 2003 .

[57]  G. Voth,et al.  Understanding ionic liquids through atomistic and coarse-grained molecular dynamics simulations. , 2007, Accounts of chemical research.

[58]  R. Noble,et al.  Regular Solution Theory and CO2 Gas Solubility in Room-Temperature Ionic Liquids , 2004 .

[59]  J. Wilkes A short history of ionic liquids—from molten salts to neoteric solvents , 2002 .

[60]  William L. Jorgensen,et al.  PERFORMANCE OF THE AMBER94, MMFF94, AND OPLS-AA FORCE FIELDS FOR MODELING ORGANIC LIQUIDS , 1996 .

[61]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[62]  Ian R. Dunkin,et al.  Investigations of solvent–solute interactions in room temperature ionic liquids using solvatochromic dyes , 2001 .

[63]  R. Lynden-Bell Gas—liquid interfaces of room temperature ionic liquids , 2003 .

[64]  Mark N. Kobrak,et al.  Molecular Dynamics Study of Polarity in Room-Temperature Ionic Liquids , 2004 .

[65]  David Rooney,et al.  Thermal Conductivities of Ionic Liquids over the Temperature Range from 293 K to 353 K , 2007 .

[66]  G. Voth,et al.  Molecular Dynamics Simulation of Ionic Liquids: The Effect of Electronic Polarizability , 2004 .

[67]  M. Klein,et al.  Modelling room temperature ionic liquids. , 2008, Chemical communications.

[68]  D. Kofke,et al.  A general-purpose biasing scheme for Monte Carlo simulation of associating fluids , 2001 .

[69]  E. Maginn,et al.  Calculating the enthalpy of vaporization for ionic liquid clusters. , 2007, The journal of physical chemistry. B.

[70]  P. K. Mandal,et al.  Excitation-Wavelength-Dependent Fluorescence Behavior of Some Dipolar Molecules in Room-Temperature Ionic Liquids , 2004 .

[71]  Mahn‐Soo Choi,et al.  Solvation in molecular ionic liquids , 2003 .

[72]  M. D. Del Pópolo,et al.  Neutral and charged 1-butyl-3-methylimidazolium triflate clusters: equilibrium concentration in the vapor phase and thermal properties of nanometric droplets. , 2007, The journal of physical chemistry. B.

[73]  E. Maginn,et al.  Molecular simulation study of some thermophysical and transport properties of triazolium-based ionic liquids. , 2006, The journal of physical chemistry. B.

[74]  J. Gross Molecular ions of ionic liquids in the gas phase , 2008, Journal of the American Society for Mass Spectrometry.

[75]  C. Margulis,et al.  Room-temperature ionic liquids: slow dynamics, viscosity, and the red edge effect. , 2007, Accounts of chemical research.

[76]  Z. Siwy,et al.  Squeezing ionic liquids through nanopores. , 2009, Nano letters.

[77]  A. Pádua,et al.  Molecular force field for ionic liquids IV: trialkylimidazolium and alkoxycarbonyl-imidazolium cations; alkylsulfonate and alkylsulfate anions. , 2008, The journal of physical chemistry. B.

[78]  P. Wasserscheid,et al.  Ionic liquids: polar, but weakly coordinating solvents for the first biphasic oligomerisation of ethene to higher α-olefins with cationic Ni complexes , 2001 .

[79]  Doros N Theodorou A reversible minimum-to-minimum mapping method for the calculation of free-energy differences. , 2006, The Journal of chemical physics.

[80]  Maria Forsyth,et al.  On the concept of ionicity in ionic liquids. , 2009, Physical chemistry chemical physics : PCCP.

[81]  S. Pandey,et al.  Effect of Water on the Solvatochromic Probe Behavior within Room-Temperature Ionic Liquid 1-Butyl-3-Methylimidazolium Hexafluorophosphate , 2002 .

[82]  C. Margulis,et al.  Heterogeneity in a room-temperature ionic liquid: persistent local environments and the red-edge effect. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[83]  S. Leone,et al.  Photoelectron spectrum of isolated ion-pairs in ionic liquid vapor. , 2007, The journal of physical chemistry. A.

[84]  A. Pádua,et al.  Molecular simulation study of interactions of carbon dioxide and water with ionic liquids. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[85]  K. R. Seddon,et al.  The nature of ionic liquids in the gas phase. , 2007, The journal of physical chemistry. A.

[86]  Kikuko Hayamizu,et al.  Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 1. Variation of Anionic Species , 2004 .

[87]  B. Berne,et al.  Why is the partial molar volume of CO2 so small when dissolved in a room temperature ionic liquid? Structure and dynamics of CO2 dissolved in [Bmim+] [PF6(-)]. , 2005, Journal of the American Chemical Society.

[88]  Wei Shi,et al.  Improvement in molecule exchange efficiency in Gibbs ensemble Monte Carlo: Development and implementation of the continuous fractional component move , 2008, J. Comput. Chem..

[89]  A. Taubert,et al.  Surprisingly high, bulk liquid-like mobility of silica-confined ionic liquids. , 2009, Physical chemistry chemical physics : PCCP.

[90]  W. Shi,et al.  Determining the Accuracy of Classical Force Fields for Ionic Liquids: Atomistic Simulation of the Thermodynamic and Transport Properties of 1-Ethyl-3-methylimidazolium Ethylsulfate ([emim][EtSO4]) and Its Mixtures with Water , 2008 .

[91]  S. Verevkin,et al.  Experimental vapor pressures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids. , 2006, The journal of physical chemistry. A.

[92]  A. Panagiotopoulos,et al.  Micellization in Model Surfactant Systems , 1999 .

[93]  K. R. Seddon,et al.  The distillation and volatility of ionic liquids , 2006, Nature.

[94]  Y. Shim,et al.  Solvation, solute rotation and vibration relaxation, and electron-transfer reactions in room-temperature ionic liquids. , 2007, Accounts of chemical research.

[95]  M. Ribeiro,et al.  Structure of ionic liquids of 1-alkyl-3-methylimidazolium cations: a systematic computer simulation study. , 2004, The Journal of chemical physics.

[96]  S. Balasubramanian,et al.  Refined potential model for atomistic simulations of ionic liquid [bmim][PF6]. , 2007, The Journal of chemical physics.

[97]  J. Brennecke,et al.  Heat Capacities and Excess Enthalpies of 1-Ethyl-3-methylimidazolium-Based Ionic Liquids and Water , 2008 .

[98]  E. Maginn,et al.  Monte Carlo simulations of gas solubility in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. , 2005, The journal of physical chemistry. B.

[99]  E. Maginn Atomistic Simulation of Ionic Liquids , 2009 .

[100]  John M. Slattery,et al.  Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies. , 2006, Journal of the American Chemical Society.

[101]  M. Watanabe,et al.  Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. , 2005, The journal of physical chemistry. B.

[102]  M. P. Tosi,et al.  Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—II: The generalized Huggins-Mayer form☆ , 1964 .

[103]  Joan F. Brennecke,et al.  How polar are room-temperature ionic liquids? , 2001 .

[104]  P. Hunt The simulation of imidazolium-based ionic liquids , 2006 .

[105]  E. Castner,et al.  Physical properties and intermolecular dynamics of an ionic liquid compared with its isoelectronic neutral binary solution. , 2005, The journal of physical chemistry. A.

[106]  R. Lynden-Bell,et al.  Chemical potentials of water and organic solutes in imidazolium ionic liquids: a simulation study , 2002 .

[107]  M. Jagtoyen,et al.  Vapour Pressure and Thermodynamics of the System 1-Methyl-3-Ethyl-Imidazolium Chloride - Aluminium Chloride , 1991 .

[108]  Edward J Maginn,et al.  Influence of water on diffusion in imidazolium-based ionic liquids: a pulsed field gradient NMR study. , 2009, The journal of physical chemistry. B.

[109]  Daan Frenkel,et al.  Configurational bias Monte Carlo: a new sampling scheme for flexible chains , 1992 .

[110]  G. Voth,et al.  On the Structure and Dynamics of Ionic Liquids , 2004 .

[111]  Oleg Borodin,et al.  Structure and dynamics of N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid from molecular dynamics simulations. , 2006, The journal of physical chemistry. B.

[112]  Peter Licence,et al.  Vapourisation of ionic liquids. , 2007, Physical chemistry chemical physics : PCCP.

[113]  A. Pádua,et al.  Modeling Ionic Liquids Using a Systematic All-Atom Force Field , 2004 .

[114]  Michael J. Zaworotko,et al.  Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids , 1992 .

[115]  E. Maginn,et al.  Computing the melting point and thermodynamic stability of the orthorhombic and monoclinic crystalline polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride. , 2007, The Journal of chemical physics.

[116]  J. Rajian,et al.  Nanostructural organization and anion effects on the temperature dependence of the optical Kerr effect spectra of ionic liquids. , 2007, The journal of physical chemistry. B.

[117]  M. Ribeiro,et al.  Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations. , 2005, The Journal of chemical physics.

[118]  E. Maginn,et al.  A Monte Carlo simulation study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate: liquid structure, volumetric properties and infinite dilution solution thermodynamics of CO2 , 2004 .

[119]  Simulations of ionic liquids, solutions, and surfaces. , 2007, Accounts of chemical research.

[120]  M. Watanabe,et al.  Pulsed-Gradient Spin−Echo 1H and 19F NMR Ionic Diffusion Coefficient, Viscosity, and Ionic Conductivity of Non-Chloroaluminate Room-Temperature Ionic Liquids , 2001 .

[121]  R. Snurr,et al.  Molecular modeling and experimental studies of the thermodynamic and transport properties of pyridinium-based ionic liquids. , 2006, The journal of physical chemistry. B.