CAPN5 gene silencing by short hairpin RNA interference

[1]  V. Mahajan,et al.  CAPN5 gene silencing by short hairpin RNA interference , 2014, BMC Research Notes.

[2]  Ranjana Singh,et al.  Calpain 5 Is Highly Expressed in the Central Nervous System (CNS), Carries Dual Nuclear Localization Signals, and Is Associated with Nuclear Promyelocytic Leukemia Protein Bodies* , 2014, The Journal of Biological Chemistry.

[3]  Katherine J. Wert,et al.  Functional validation of a human CAPN5 exome variant by lentiviral transduction into mouse retina. , 2014, Human molecular genetics.

[4]  Katherine J. Wert,et al.  Mid-stage intervention achieves similar efficacy as conventional early-stage treatment using gene therapy in a pre-clinical model of retinitis pigmentosa. , 2014, Human molecular genetics.

[5]  V. Mahajan,et al.  Lymphocyte infiltration in CAPN5 autosomal dominant neovascular inflammatory vitreoretinopathy , 2013, Clinical ophthalmology.

[6]  V. Mahajan,et al.  Surgical management of fibrotic encapsulation of the fluocinolone acetonide implant in CAPN5-associated proliferative vitreoretinopathy , 2013, Clinical ophthalmology.

[7]  W. Hauswirth,et al.  RNAi-Mediated Gene Suppression in a GCAP1(L151F) Cone-Rod Dystrophy Mouse Model , 2013, PloS one.

[8]  Katherine J. Wert,et al.  Gene therapy provides long-term visual function in a pre-clinical model of retinitis pigmentosa. , 2013, Human molecular genetics.

[9]  A. Bassuk,et al.  Monozygotic twins with CAPN5 autosomal dominant neovascular inflammatory vitreoretinopathy , 2012, Clinical ophthalmology.

[10]  V. Sheffield,et al.  Calpain-5 Mutations Cause Autoimmune Uveitis, Retinal Neovascularization, and Photoreceptor Degeneration , 2012, PLoS genetics.

[11]  R. Schachar,et al.  Phase 1 dose-escalation study of a siRNA targeting the RTP801 gene in age-related macular degeneration patients , 2012, Eye.

[12]  Kathleen A. Marshall,et al.  AAV2 Gene Therapy Readministration in Three Adults with Congenital Blindness , 2012, Science Translational Medicine.

[13]  A. Krainer,et al.  RNA therapeutics: beyond RNA interference and antisense oligonucleotides , 2012, Nature Reviews Drug Discovery.

[14]  Jesse D. Sengillo,et al.  Lentivirus-mediated expression of cDNA and shRNA slows degeneration in retinitis pigmentosa , 2011, Experimental biology and medicine.

[15]  S. Tsang,et al.  shRNA knockdown of guanylate cyclase 2e or cyclic nucleotide gated channel alpha 1 increases photoreceptor survival in a cGMP phosphodiesterase mouse model of retinitis pigmentosa , 2011, Journal of cellular and molecular medicine.

[16]  Beverly L. Davidson,et al.  Current prospects for RNA interference-based therapies , 2011, Nature Reviews Genetics.

[17]  Xinghuai Sun,et al.  RNA interference as a gene silencing therapy for mutant MYOC protein in primary open angle glaucoma , 2009, Diagnostic pathology.

[18]  W. Hauswirth,et al.  Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. , 2008, Human gene therapy.

[19]  Kathleen A. Marshall,et al.  Safety and efficacy of gene transfer for Leber's congenital amaurosis. , 2008, The New England journal of medicine.

[20]  R. Ali,et al.  Gene therapy progress and prospects: the eye , 2006, Gene Therapy.

[21]  S. Selkirk,et al.  Gene therapy in clinical medicine , 2004, Postgraduate Medical Journal.

[22]  Selkirk Sm Gene therapy in clinical medicine , 2004 .

[23]  F. Rolling Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives , 2004, Gene therapy.

[24]  D. E. Goll,et al.  The calpain system. , 2003, Physiological reviews.

[25]  Monica Driscoll,et al.  Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans , 2002, Nature.