Activity and specificity studies of the new thermostable esterase EstDZ2.

[1]  Peter Menzel,et al.  Discovering novel hydrolases from hot environments. , 2018, Biotechnology advances.

[2]  A. Chatziioannou,et al.  Metagenomic mining for thermostable esterolytic enzymes uncovers a new family of bacterial esterases , 2016, Scientific Reports.

[3]  A. Krogh,et al.  Comparative Metagenomics of Eight Geographically Remote Terrestrial Hot Springs , 2015, Microbial Ecology.

[4]  Ricardo Femat,et al.  Monitoring Lipase/Esterase Activity by Stopped Flow in a Sequential Injection Analysis System Using p-Nitrophenyl Butyrate , 2015, Sensors.

[5]  S. S. Kanwar,et al.  Organic Solvent Tolerant Lipases and Applications , 2014, TheScientificWorldJournal.

[6]  A. Demain,et al.  Microbial Enzymes: Tools for Biotechnological Processes , 2014, Biomolecules.

[7]  Sutapa Bose,et al.  A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine, and Beyond , 2013, BioMed research international.

[8]  Kenthorai Raman Jegannathan,et al.  Environmental assessment of enzyme use in industrial production – a literature review , 2013 .

[9]  Servé W. M. Kengen,et al.  Carboxylic ester hydrolases from hyperthermophiles , 2009, Extremophiles.

[10]  P. Hugenholtz,et al.  Microbiology: Metagenomics , 2008, Nature.

[11]  Jürgen Pleiss,et al.  The Lipase Engineering Database: a navigation and analysis tool for protein families , 2003, Nucleic Acids Res..

[12]  C. Schmidt-Dannert,et al.  Mapping the substrate selectivity of new hydrolases using colorimetric screening: lipases from Bacillus thermocatenulatus and Ophiostoma piliferum, esterases from Pseudomonas fluorescens and Streptomyces diastatochromogenes , 2001 .

[13]  A. Klibanov Improving enzymes by using them in organic solvents , 2001, Nature.

[14]  R. Kazlauskas,et al.  QUANTITATIVE SCREENING OF HYDROLASE LIBRARIES USING PH INDICATORS: IDENTIFYING ACTIVE AND ENANTIOSELECTIVE HYDROLASES , 1998 .

[15]  K. Jakobsen,et al.  Development of digestive enzymes in pigs with emphasis on lipolytic activity in the stomach and pancreas. , 1997, Journal of animal science.

[16]  R. Verger ‘Interfacial activation’ of lipases: facts and artifacts , 1997 .

[17]  A Baptista,et al.  Lipases and esterases: a review of their sequences, structure and evolution. , 1995, Biotechnology annual review.

[18]  L. Thim,et al.  A structural domain (the lid) found in pancreatic lipases is absent in the guinea pig (phospho)lipase. , 1993, Biochemistry.

[19]  Aviva Rappaport,et al.  A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa , 1991 .

[20]  C. Sih,et al.  Quantitative analyses of biochemical kinetic resolutions of enantiomers , 1982 .

[21]  W. Steglich,et al.  Simple Method for the Esterification of Carboxylic Acids , 1978 .