Chemical equilibrium model of solution behavior and solubility in the H-Na-K-OH-Cl-HSO 4 -SO 4 -H 2 O system to high concentration and temperature 1 1Associate editor: D. J. Wesolowski

[1]  T. L. Thompson,et al.  The Detection of Large HNO3-Containing Particles in the Winter Arctic Stratosphere , 2001, Science.

[2]  M. H. Lietzke,et al.  Electromotive force studies in aqueous solutions at elevated temperatures. X. Thermodynamic properties of HCl-KCl, HCl-RbCl, HCl-CsCl, HCl-MgCl2, HCl-CaCl2, HCl-SrCl2, and HCl-AlCl3 mixtures , 1968 .

[3]  Kenneth S. Pitzer,et al.  Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes , 1974 .

[4]  F. Jones The quaternary system CaO—Al2O3—CaSO4—H2O at 25° C , 1939 .

[5]  G. Marion Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO , 2001 .

[6]  J. E. Prue,et al.  The dissociation constant of CaOH+ from 0° to 40°C , 1959 .

[7]  Jerry P. Greenberg,et al.  The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250°C , 1989 .

[8]  R. Mesmer,et al.  Thermodynamic quantities for the ionization of water in sodium chloride media to 300.degree.C , 1978 .

[9]  K. H. Khoo,et al.  Thermodynamics of electrolyte solutions. The system HCl + CaCl2 + H2O at 298.15°K , 1977 .

[10]  J. Simonson,et al.  The enthalpy of dilution and apparent molar heat capacity of NaOH(aq) to 523 K and 40 MPa , 1989 .

[11]  N. Møller,et al.  The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C , 1984 .

[12]  D. G. Archer,et al.  Modeling of the thermodynamics of electrolyte solutions to high temperatures including ion association: application to hydrochloric acid , 1990 .

[13]  M. H. Lietzke,et al.  ELECTROMOTIVE FORCE STUDIES IN AQUEOUS SOLUTIONS AT ELEVATED TEMPERATURES. I. THE STANDARD POTENTIAL OF THE SILVER-SILVER CHLORIDE ELECTRODE1 , 1960 .

[14]  John H. Weare,et al.  The prediction of mineral solubilities in natural waters: the NaKMgCaClSO4H2O system from zero to high concentration at 25° C , 1980 .

[15]  Kenneth S. Pitzer,et al.  Thermodynamic Properties of Aqueous Sodium Chloride Solutions , 1984 .

[16]  F. Millero,et al.  A Chemical Equilibrium Model for Natural Waters , 1998 .

[17]  C. Baes,et al.  Acidity measurements at elevated temperatures. VII. Dissociation of water , 1974 .

[18]  G. Marion A molal-based model for strong acid chemistry at low temperatures (<200 to 298 K) , 2002 .

[19]  R. Mesmer,et al.  pH, Definition and measurement at high temperatures , 1992 .

[20]  R. Mesmer,et al.  Isopiestic studies of NaHSO4(aq) at elevated temperatures. Thermodynamic properties , 1993 .

[21]  R. Mesmer,et al.  Isopiestic molalities for aqueous solutions of the alkali metal hydroxides at elevated temperatures , 1998 .

[22]  R. Mesmer,et al.  An isopiestic study of aqueous solutions of the alkali metal hydrogensulfates at elevated temperatures , 1996 .

[23]  N. Møller,et al.  The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-Ca-Cl-SO4-H2O system, to high temperature and concentration , 1988 .

[24]  J. A. Rard,et al.  Thermodynamic properties of 0–6 mol kg–1 aqueous sulfuric acid from 273.15 to 328.15 K , 1994 .

[25]  Michael Whitfield,et al.  A chemical model of seawater including dissolved ammonia and the stoichiometric dissociation constant of ammonia in estuarine water and seawater from −2 to 40°C , 1995 .

[26]  Werner Stumm,et al.  Fresh Water and Ocean. (Book Reviews: Aquatic Chemistry. An Introduction Emphasizing Chemical Equilibria in Natural Waters) , 1982 .

[27]  W. Seyfried,et al.  Experimental determination of portlandite solubility in H2O and acetate solutions at 100–350 °C and 500 bars: Constraints on calcium hydroxide and calcium acetate complex stability , 1991 .

[28]  J. Balej Activity Coefficients of Aqueous Solutions of NaOH and KOH in Wide Concentration and Temperature Ranges , 1996 .

[29]  H. Stephen,et al.  Solubilities of inorganic and organic compounds , 1963 .

[30]  D. A. Palmer,et al.  Dissociation constant of bisulfate ion in aqueous sodium chloride solutions to 250 degree C , 1990 .

[31]  John Johnston,et al.  THE SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SALT SOLUTIONS , 1931 .

[32]  John H. Weare,et al.  The prediction of borate mineral equilibria in natural waters: Application to Searles Lake, California , 1986 .

[33]  John H. Weare,et al.  Computer Modeling for Geothermal Systems: Predicting Carbonate and Silica Scale Formation, CO2 Breakout and H2S Exchange , 1998 .

[34]  M. H. Lietzje,et al.  Electromotive force studies in aqueous solutions at elevated temperatures—XIII: the thermodynamic properties of HClNaClMgCl2 mixtures , 1971 .

[35]  R. A. Robie,et al.  Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10[5] pascals) pressure and at higher temperatures , 1995 .

[36]  K. Pitzer,et al.  Heat capacity and other thermodynamic properties of Na2SO4(aq) in hydrothermal solutions and the solubilities of sodium sulfate minerals in the system Na-Cl-SO4-OH-H2O to 300°C , 1988 .

[37]  K. Pitzer,et al.  Thermodynamics of aqueous calcium chloride , 1983 .

[38]  D. Garvin,et al.  CODATA thermodynamic tables , 1987 .

[39]  J. F. Breazeale,et al.  Solubility of Calcium Sulphate in Aqueous Solutions of Sulphuric Acid , 2022 .

[40]  Nicolas Spycher,et al.  Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution , 1984 .

[41]  A. Wexler,et al.  Thermodynamic Model of the System H+−NH4+−Na+−SO42-−NO3-−Cl-−H2O at 298.15 K , 1998 .

[42]  G. Kegeles,et al.  Thermodynamics of Concentrated Aqueous Solutions of Sodium Hydroxide1,2 , 1940 .

[43]  D. G. Archer,et al.  The Dielectric Constant of Water and Debye‐Hückel Limiting Law Slopes , 1990 .

[44]  M. Clynne,et al.  Solubility of sodium chloride and potassium chloride in aqueous hydrochloric acid from 20 to 85.degree.C , 1980 .

[45]  J. A. Rard Isopiestic determination of the osmotic coefficients of aqueous H/sub 2/SO/sub 4/ at 25/sup 0/C , 1983 .

[46]  J. Simonson,et al.  CaCl2(aq) at elevated temperatures. Enthalpies of dilution, isopiestic molalities, and thermodynamic properties , 1994 .

[47]  R. Mesmer,et al.  An isopiestic study of {(1 - y)NaHSO4 + yNa2SO4}(aq) at elevated temperatures , 1994 .

[48]  K. Pitzer,et al.  Thermodynamics of multicomponent, miscible, ionic systems , 1986 .

[49]  W. L. Marshall,et al.  Second Dissociation Constant of Sulfuric Acid from 25 to 350° Evaluated from Solubilities of Calcium Sulfate in Sulfuric Acid Solutions1,2 , 1966 .

[50]  P. G. Hill,et al.  A Fundamental Equation of State for Heavy Water , 1982 .

[51]  K. Pitzer,et al.  Thermodynamics of electrolytes. 7. Sulfuric acid , 1977 .

[52]  S. Brassell,et al.  The identification of mono-, di- and trimethyl 2-methyl-2-(4,8,12-trimethyltridecyl) chromans and their occurrence in the geosphere , 1987 .

[53]  J. Duchesne,et al.  Measurement and prediction of portlandite solubility in alkali solutions , 1995 .

[54]  D. Nordstrom,et al.  Negative pH and Extremely Acidic Mine Waters from Iron Mountain, California , 2000 .

[55]  F. Jones The Quinary System CaO–Al2O3–CaSO4–K2O–H2O (1 per cent KOH) at 25°C , 1944 .

[56]  H. S. Harned,et al.  The Thermodynamics of Aqueous Potassium Hydroxide Solutions from Electromotive Force Measurements , 1937 .

[57]  F. Millero,et al.  The solubility of calcite and aragonite in seawater of 35%. salinity at 25°C and atmospheric pressure , 1980 .

[58]  H. Eugster,et al.  Evaporation of Seawater: Calculated Mineral Sequences , 1980, Science.

[59]  Duncan A. MacInnes,et al.  The principlēs of electrochemistry , 1944 .

[60]  K. Pitzer,et al.  Thermodynamics of Aqueous NaOH over the Complete Composition Range and to 523 K and 400 MPa , 1997 .

[61]  Kenneth S. Pitzer,et al.  Thermodynamics of electrolytes. I. Theoretical basis and general equations , 1973 .

[62]  John H. Weare,et al.  The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the NaKCaMgClSO4H2O system at temperatures below 25°C , 1990 .

[63]  J. Wills,et al.  Ternary Systems. XXIV. Calcium Sulfate, Sodium Sulfate and Water , 1938 .

[64]  R. Mesmer,et al.  Thermodynamics of aqueous solutions of the alkali metal sulfates , 1986 .

[65]  Peter Brimblecombe,et al.  Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes , 1992 .

[66]  Kenneth S. Pitzer,et al.  Thermodynamics of multicomponent, miscible, ionic systems: theory and equations , 1986 .

[67]  H. S. Harned,et al.  The Thermodynamics of Ionized Water in Sodium Chloride Solutions , 1935 .

[68]  M. Blazquez,et al.  Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria , 2001 .

[69]  J. A. Rard,et al.  Thermodynamics of Electrolytes. 13. Ionic Strength Dependence of Higher-Order Terms; Equations for CaCl2 and MgCl2 , 1999 .

[70]  E. Königsberger,et al.  Low-temperature thermodynamic model for the system Na2CO3−MgCO3−CaCO3−H2O , 1999 .

[71]  G. Akerlof,et al.  Thermodynamics of Aqueous Solutions of Potassium Hydroxide1 , 1948 .

[72]  W. Schroeder,et al.  Solubility Equilibria of Sodium Sulfate at Temperatures from 150 to 350°.1 III. Effect of Sodium Hydroxide and Sodium Phosphate , 1935 .

[73]  Kenneth S. Pitzer,et al.  Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na-K-Mg-Cl-SO4-OH-H2O , 1987 .

[74]  J. Weare,et al.  A chemical equilibrium algorithm for highly non-ideal multiphase systems: Free energy minimization , 1987 .

[75]  Walter J. Hamer,et al.  The Ionization Constant of Water and the Dissociation of Water in Potassium Chloride Solutions from Electromotive Forces of Cells without Liquid Junction1 , 1933 .

[76]  Nancy Moller,et al.  A chemical equilibrium model of solution behavior and solubility in the H-Na-K-Ca-OH-Cl-HSO , 2004 .

[77]  J. A. Rard,et al.  Critical Evaluation of the Thermodynamic Properties of Aqueous Calcium Chloride. 1. Osmotic and Activity Coefficients of 0−10.77 mol·kg-1 Aqueous Calcium Chloride Solutions at 298.15 K and Correlation with Extended Pitzer Ion-Interaction Models , 1997 .

[78]  W. Hamer,et al.  Osmotic Coefficients and Mean Activity Coefficients of Uni‐univalent Electrolytes in Water at 25°C , 1972 .

[79]  J. Morse,et al.  The carbonic acid system and calcite solubility in aqueous Na-K-Ca-Mg-Cl-SO4 solutions from 0 to 90°C , 1993 .

[80]  Andrzej Anderko,et al.  A speciation-based model for mixed-solvent electrolyte systems , 2002 .

[81]  D. D. Wagman,et al.  The NBS tables of chemical thermodynamic properties : selected values for inorganic and C1 and C2 organic substances in SI units , 1982 .

[82]  R. Mesmer,et al.  Isopiestic studies of H2SO4(aq) at elevated temperatures: Thermodynamic properties , 1992 .

[83]  J. A. Rard Isopiestic determination of the osmotic and activity coefficients of {(1 − y)H2SO4 + yNa2SO4}(aq) at 298.15 K I. Results for y = 0.5 (NaHSO4) and y = 0.55595, 0.70189, and 0.84920 , 1989 .

[84]  A. Dickson pH scales and proton-transfer reactions in saline media such as sea water , 1984 .

[85]  K. Pitzer,et al.  Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent , 1973 .

[86]  C. W. Davies,et al.  E.m.f. studies of electrolytic dissociation. Part I.—Sulphuric acid in water , 1952 .

[87]  D. G. Archer,et al.  The enthalpy of dilution of HCl(aq) to 648 K and 40 MPa thermodynamic properties , 1987 .

[88]  K. H. Khoo,et al.  Specific ionic interactions in the quaternary systems HCl−NaCl−KCl-water and HCl−NH4Cl−KCl-water at 25°C , 1979 .

[89]  J. A. Rard Isopiestic determination of the osmotic and activity coefficients of {(1 − y)H2SO4 + yNa2SO4}(aq) at the temperature 298.15 K II. Results for y = (0.12471, 0.24962, and 0.37439) , 1992 .