Gradient-free stochastic sensitivity analysis of the shipboard power system

United States. Office of Naval Research (N00014-02-1-0623); United States. Office of Naval Research (N00014-07-1-0846); Massachusetts Institute of Technology. Sea Grant College Program (NA060AR4170019 NOAA/DOC)

[1]  Andrea Saltelli,et al.  Sensitivity analysis of model output. Performance of the iterated fractional factorial design method , 1995 .

[2]  Jasmine Yen-teng Foo,et al.  Multi-element probabilistic collocation in high dimensions: Applications to systems biology and physical systems , 2008 .

[3]  S.D. Sudhoff,et al.  Electric ship drive and power system , 2000, Conference Record of the 2000 Twenty-fourth International Power Modulator Symposium.

[4]  S. C. Cotter A screening design for factorial experiments with interactions , 1979 .

[5]  Joseph A. C. Delaney Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.

[6]  J. S. Hunter,et al.  Statistics for experimenters : an introduction to design, data analysis, and model building , 1979 .

[7]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[8]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[9]  Franz S. Hover,et al.  Uncertainty quantification in simulations of power systems: Multi-element polynomial chaos methods , 2010, Reliab. Eng. Syst. Saf..

[10]  James Richard Hockenberry Evaluation of uncertainty in dynamic, reduced-order power system models , 2000 .

[11]  Pradya Prempraneerach,et al.  Uncertainty analysis in a shipboard integrated power system using multi-element polynomial chaos , 2007 .

[12]  T. Turányi Sensitivity analysis in chemical kinetics , 2008 .