Introduction to the Special Issue on Evolving IoT and Cyber-Physical Systems: Advancements, Applications, and Solutions
暂无分享,去创建一个
Internet of Things (IoT) is regarded as a next-generation wave of Information Technology (IT) after the widespread emergence of the Internet and mobile communication technologies. IoT supports information exchange and networked interaction of appliances, vehicles and other objects, making sensing and actuation possible in a low-cost and smart manner. On the other hand, cyber-physical systems (CPS) are described as the engineered systems which are built upon the tight integration of the cyber entities (e.g., computation, communication, and control) and the physical things (natural and man-made systems governed by the laws of physics). The IoT and CPS are not isolated technologies. Rather it can be said that IoT is the base or enabling technology for CPS and CPS is considered as the grownup development of IoT, completing the IoT notion and vision. Both are merged into closed-loop, providing mechanisms for conceptualizing, and realizing all aspects of the networked composed systems that are monitored and controlled by computing algorithms and are tightly coupled among users and the Internet. That is, the hardware and the software entities are intertwined, and they typically function on different time and location-based scales. In fact, the linking between the cyber and the physical world is enabled by IoT (through sensors and actuators). CPS that includes traditional embedded and control systems are supposed to be transformed by the evolving and innovative methodologies and engineering of IoT. Several applications areas of IoT and CPS are smart building, smart transport, automated vehicles, smart cities, smart grid, smart manufacturing, smart agriculture, smart healthcare, smart supply chain and logistics, etc. Though CPS and IoT have significant overlaps, they differ in terms of engineering aspects. Engineering IoT systems revolves around the uniquely identifiable and internet-connected devices and embedded systems; whereas engineering CPS requires a strong emphasis on the relationship between computation aspects (complex software) and the physical entities (hardware). Engineering CPS is challenging because there is no defined and fixed boundary and relationship between the cyber and physical worlds. In CPS, diverse constituent parts are composed and collaborated together to create unified systems with global behaviour. These systems need to be ensured in terms of dependability, safety, security, efficiency, and adherence to real‐time constraints. Hence, designing CPS requires knowledge of multidisciplinary areas such as sensing technologies, distributed systems, pervasive and ubiquitous computing, real-time computing, computer networking, control theory, signal processing, embedded systems, etc. CPS, along with the continuous evolving IoT, has posed several challenges. For example, the enormous amount of data collected from the physical things makes it difficult for Big Data management and analytics that includes data normalization, data aggregation, data mining, pattern extraction and information visualization. Similarly, the future IoT and CPS need standardized abstraction and architecture that will allow modular designing and engineering of IoT and CPS in global and synergetic applications. Another challenging concern of IoT and CPS is the security and reliability of the components and systems. Although IoT and CPS have attracted the attention of the research communities and several ideas and solutions are proposed, there are still huge possibilities for innovative propositions to make IoT and CPS vision